Oleg G Turutanov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6545826/publications.pdf

Version: 2024-02-01

1163117 996975 33 231 8 15 citations g-index h-index papers 33 33 33 201 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Hybrid shield for microwave single-photon counter based on a flux qubit. Low Temperature Physics, 2022, 48, 228-231.	0.6	2
2	Ultra-low supply voltage crystal quartz oscillator. Review of Scientific Instruments, 2021, 92, 054706.	1.3	0
3	Small capacitance self-shunted MoRe–Si(W)–MoRe junctions for SQUIDs applications. Applied Nanoscience (Switzerland), 2020, 10, 2843-2848.	3.1	5
4	Scheme for Flux-Qubit-Based Microwave Single-Photon Counter with Weak Continuous Measurement. , 2020, , .		0
5	On the possibility of faster detection of magnetic flux changes in a single-photon counter by RF SQUID with MoRe–Si(W)–MoRe junction. Low Temperature Physics, 2019, 45, 776-784.	0.6	6
6	Controlled Stochastic Amplification of a Weak Signal in a Superconducting Quantum Interferometer. Low Temperature Physics, 2019, 45, 60-66.	0.6	1
7	THERMAL SMEARING OF INFRARED PATTERN ON THE SURFACE OF A THIN FILM HTSC BOLOMETER. Radio Physics and Radio Astronomy, 2019, 24, 136-143.	0.3	O
8	Frequency-tuned microwave photon counter based on a superconductive quantum interferometer. Low Temperature Physics, 2018, 44, 213-220.	0.6	11
9	Spatial characterization of the edge barrier in wide superconducting films. Low Temperature Physics, 2018, 44, 226-232.	0.6	10
10	An ultra-low-power multi-octave deep-cooled amplifier for superconducting single-photon detectors, 2016, , .		2
11	Measurement of brightness temperature of two-dimensional electron gas in channel of a high electron mobility transistor at ultralow dissipation power. Solid-State Electronics, 2016, 121, 20-24.	1.4	5
12	Isolation of a Josephson qubit from the electromagnetic environment. Low Temperature Physics, 2015, 41, 867-873.	0.6	7
13	A wideband radio-frequency amplifier for investigations at temperatures from 300 to 0.1 K. Instruments and Experimental Techniques, 2015, 58, 478-482.	0.5	6
14	Experimental observation of induced stochastic transitions in a multiwall potential of an rf-SQUID loop. Low Temperature Physics, 2014, 40, 1026-1028.	0.6	0
15	Charge-flux qubit coupled to a tank circuit in a strong low-frequency electromagnetic field. Low Temperature Physics, 2014, 40, 1035-1043.	0.6	1
16	Stochastic resonance in an RF SQUID with shunted ScS junction. Physica A: Statistical Mechanics and Its Applications, 2014, 396, 1-8.	2.6	6
17	Quantum superposition of three macroscopic states and superconducting qutrit detector. Physical Review B, 2012, 85, .	3.2	12
18	Superposition of states in flux qubits with a Josephson junction of the ScS type (Review Article). Low Temperature Physics, 2012, 38, 301-310.	0.6	7

#	Article	IF	CITATIONS
19	Stochastic-parametric amplification of narrow-band signals in a single-junction SQUID interferometer. Low Temperature Physics, 2008, 34, 37-42.	0.6	1
20	Stochastic Amplifier Based on Superconducting Interferometer with 4-Terminal Josephson Junction for Flux Qubit State Readout., 2007,,.		0
21	Laser scanning microscopy of HTS films and devices (Review Article). Low Temperature Physics, 2006, 32, 592-607.	0.6	54
22	Stochastic resonance in superconducting loops containing Josephson junctions. Numerical simulation. Low Temperature Physics, 2006, 32, 1123-1130.	0.6	7
23	Stochastic resonance-based input circuits for SQUIDs. Physica C: Superconductivity and Its Applications, 2002, 372-376, 237-239.	1.2	5
24	Spatial distribution of critical current and supercurrent density in individual filaments extracted from Ag-sheathed Bi-2223 tapes. Physica B: Condensed Matter, 2000, 284-288, 2071-2072.	2.7	3
25	Giant oscillations of coupling strength in Mo/Si multilayers with constant semiconductor thickness. Physical Review B, 1997, 56, 2372-2375.	3.2	10
26	Spatially resolved study of transition to the phase-slip lines resistive state in wide superconducting strips. European Physical Journal D, 1996, 46, 643-644.	0.4	4
27	Giant oscillations of coupling strength on Mo/Si multilayers with the constant thickness of semiconductor layers. European Physical Journal D, 1996, 46, 731-732.	0.4	1
28	Laser scanning visualization of evolution of vortex instability in current-carrying superconducting strips. European Physical Journal D, 1996, 46, 877-878.	0.4	12
29	Spatially resolved characterization of superconducting films and cryoelectronic devices by means of low temperature scanning laser microscope. Applied Surface Science, 1996, 106, 390-395.	6.1	33
30	A low temperature system with a pulse UV laser for scribing HTSC films and single crystals. Applied Surface Science, 1996, 106, 321-325.	6.1	8
31	Laser scanning imaging and local characterization of superconducting properties in high-Tc thin film multiturn coil. Physica C: Superconductivity and Its Applications, 1994, 232, 93-98.	1.2	11
32	Photoresponse of epitaxial YBa2Cu3O7â^'x ultrathin films. Cryogenics, 1994, 34, 875-878.	1.7	0
33	Direct measurement of critical currents of individual weak links in DC interferometerby scanning laser microscope. Cryogenics, 1994, 34, 879-881.	1.7	1