Rebecca L Mcnaughton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6545662/publications.pdf Version: 2024-02-01

6.6

6.6

13

#	Article	IF	CITATIONS
1	Monoclonal Cell Line Generation and CRISPR/Cas9 Manipulation via Singleâ€Cell Electroporation. Small, 2018, 14, e1702495.	5.2	37
2	Micro- and Nanoscale Technologies for Delivery into Adherent Cells. Trends in Biotechnology, 2016, 34, 665-678.	4.9	44
3	Singleâ€Cell Detection of mRNA Expression Using Nanofountainâ€Probe Electroporated Molecular Beacons. Small, 2015, 11, 2386-2391.	5.2	32
4	Isolating single cells in a neurosphere assay using inertial microfluidics. Lab on A Chip, 2015, 15, 4591-4597.	3.1	48
5	Optimization of a microfluidic device for localized electroporation of cells. , 2014, , .		2
6	Microfluidic Parallel Patterning and Cellular Delivery of Molecules with a Nanofountain Probe. Journal of the Association for Laboratory Automation, 2014, 19, 100-109.	2.8	14
7	Microfluidic device for stem cell differentiation and localized electroporation of postmitotic neurons. Lab on A Chip, 2014, 14, 4486-4495.	3.1	62
8	Nanofountain Probe Electroporation (NFP-E) of Single Cells. Nano Letters, 2013, 13, 2448-2457.	4.5	102
9	Protonation of the Dinitrogen-Reduction Catalyst [HIPTN ₃ N]Mo ^{III} Investigated by ENDOR Spectroscopy. Inorganic Chemistry, 2011, 50, 418-420.	1.9	35
10	Probing in vivo Mn ²⁺ speciation and oxidative stress resistance in yeast cells with electron-nuclear double resonance spectroscopy. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 15335-15339.	3.3	113
11	The Structure of Formaldehyde-Inhibited Xanthine Oxidase Determined by 35 GHz ² H ENDOR Spectroscopy. Journal of the American Chemical Society, 2010, 132, 14015-14017.	6.6	22
12	Experimental and Theoretical EPR Study of Jahnâ^'Teller-Active [HIPTN ₃ N]MoL Complexes (L) Tj ETQ	q0_0_0 rgB 6.6	BT /Qverlock
13	ENDOR Characterization of a Synthetic Diiron Hydrazido Complex as a Model for Nitrogenase Intermediates. Journal of the American Chemical Society, 2008, 130, 546-555.	6.6	25
14	Spectroscopic and Electronic Structure Studies of Symmetrized Models for Reduced Members of the Dimethylsulfoxide Reductase Enzyme Family. Journal of the American Chemical Society, 2008, 130, 4628-4636.	6.6	30

18Nature of the Oxomolybdenumâ^'Thiolate Ï€-Bond: Implications for Moâ^'S Bonding in Sulfite Oxidase and
Xanthine Oxidase. Inorganic Chemistry, 2004, 43, 1625-1637.1.925

EPR Study of the Low-Spin [d3; S =1/2], Jahnâ⁻Teller-Active, Dinitrogen Complex of a Molybdenum Trisamidoamine. Journal of the American Chemical Society, 2007, 129, 3480-3481.

Comparing the Electronic Properties of the Low-Spin Cyanoâ[°]Ferric [Fe(N4)(Cys)] Active Sites of Superoxide Reductase and P450cam Using ENDOR Spectroscopy and DFT Calculations. Journal of the

Oxomolybdenum Tetrathiolates with Sterically Encumbering Ligands:Â Modeling the Effect of a Protein Matrix on Electronic Structure and Reduction Potentials. Inorganic Chemistry, 2005, 44, 8216-8222.

American Chemical Society, 2006, 128, 16566-16578.

16

#	Article	IF	CITATIONS
19	The Electronic Structure and Spectroscopy of Metallo-Dithiolene Complexes. Progress in Inorganic Chemistry, 2004, , 111-212.	3.0	44
20	Active-Site Stereochemical Control of Oxygen Atom Transfer Reactivity in Sulfite Oxidase. Journal of the American Chemical Society, 2002, 124, 9006-9007.	6.6	50
21	Control of Oxo-Molybdenum Reduction and Ionization Potentials by Dithiolate Donors. Inorganic Chemistry, 2000, 39, 2273-2278.	1.9	52
22	Electronic Structure Studies of Oxomolybdenum Tetrathiolate Complexes:Â Origin of Reduction Potential Differences and Relationship to Cysteineâ^'Molybdenum Bonding in Sulfite Oxidase. Inorganic Chemistry, 2000, 39, 5697-5706.	1.9	49
23	The Oxo-Gate Hypothesis and DMSO Reductase:Â Implications for a Psuedo-Ïf Bonding Interaction Involved in Enzymatic Electron Transfer. Inorganic Chemistry, 2000, 39, 4386-4387.	1.9	45
24	Spectroscopic Evidence for a Unique Bonding Interaction in Oxo-Molybdenum Dithiolate Complexes:Â Implications for σ Electron Transfer Pathways in the Pyranopterin Dithiolate Centers of Enzymes. Inorganic Chemistry, 1999, 38, 1401-1410.	1.9	119