
Miroslav Blumenberg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6545648/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Keratins and the Keratinocyte Activation Cycle. Journal of Investigative Dermatology, 2001, 116, 633-640.	0.3	468
2	Effects of Tumor Necrosis Factor-α (TNFα) in Epidermal Keratinocytes Revealed Using Global Transcriptional Profiling. Journal of Biological Chemistry, 2004, 279, 32633-32642.	1.6	263
3	Epidermal growth factor and transforming growth factor alpha specifically induce the activation- and hyperproliferation-associated keratins 6 and 16 Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 6786-6790.	3.3	179
4	Novel Genomic Effects of Glucocorticoids in Epidermal Keratinocytes. Journal of Biological Chemistry, 2007, 282, 4021-4034.	1.6	164
5	Transforming Growth Factor-β and microRNA:mRNA Regulatory Networks in Epithelial Plasticity. Cells Tissues Organs, 2007, 185, 157-161.	1.3	144
6	Attenuation of the Transforming Growth Factor Î ² -Signaling Pathway in Chronic Venous Ulcers. Molecular Medicine, 2010, 16, 92-101.	1.9	128
7	Epidermal signal transduction and transcription factor activation in activated keratinocytes. Journal of Dermatological Science, 1998, 17, 167-181.	1.0	127
8	Rays and arrays: the transcriptional program in the response of human epidermal keratinocytes to UVB illumination. FASEB Journal, 2001, 15, 2533-2535.	0.2	123
9	Transcriptional responses of human epidermal keratinocytes to cytokine interleukinâ€1. Journal of Cellular Physiology, 2008, 214, 1-13.	2.0	106
10	A bioengineered living cell construct activates an acute wound healing response in venous leg ulcers. Science Translational Medicine, 2017, 9, .	5.8	100
11	Nuclear receptors for retinoic acid and thyroid hormone regulate transcription of keratin genes Molecular Biology of the Cell, 1990, 1, 965-973.	6.5	97
12	Comparison of Methods for Transfection of Human Epidermal Keratinocytes. Journal of Investigative Dermatology, 1991, 97, 969-973.	0.3	97
13	Retinoidâ€responsive transcriptional changes in epidermal keratinocytes. Journal of Cellular Physiology, 2009, 220, 427-439.	2.0	96
14	Novel Mechanism of Steroid Action in Skin through Glucocorticoid Receptor Monomers. Molecular and Cellular Biology, 2000, 20, 4328-4339.	1.1	91
15	Interleukin-1 Induces Transcription of Keratin K6 in Human Epidermal Keratinocytes. Journal of Investigative Dermatology, 2001, 116, 330-338.	0.3	87
16	Pathway-specific Profiling Identifies the NF-κB-dependent Tumor Necrosis Factor α-regulated Genes in Epidermal Keratinocytes. Journal of Biological Chemistry, 2005, 280, 18973-18980.	1.6	86
17	Inflammatory Versus Proliferative Processes in Epidermis. Journal of Biological Chemistry, 2000, 275, 32077-32088.	1.6	80
18	Regulation of Epidermal Expression of Keratin K17 in Inflammatory Skin Diseases. Journal of Investigative Dermatology, 1996, 107, 569-575.	0.3	74

MIROSLAV BLUMENBERG

#	Article	IF	CITATIONS
19	Inhibition of JNK Promotes Differentiation of Epidermal Keratinocytes. Journal of Biological Chemistry, 2006, 281, 20530-20541.	1.6	74
20	Novel Regulation of Keratin Gene Expression by Thyroid Hormone and Retinoid Receptors. Journal of Biological Chemistry, 1996, 271, 1416-1423.	1.6	72
21	Evolution of keratin genes: Different protein domains evolve by different pathways. Journal of Molecular Evolution, 1987, 24, 319-329.	0.8	68
22	Transcriptional Profiling of Epidermal Keratinocytes: Comparison of Genes Expressed in Skin, Cultured Keratinocytes, and Reconstituted Epidermis, Using Large DNA Microarrays. Journal of Investigative Dermatology, 2003, 121, 1459-1468.	0.3	68
23	Disease-activated transcription factor: allergic reactions in human skin cause nuclear translocation of STAT-91 and induce synthesis of keratin K17 Molecular and Cellular Biology, 1994, 14, 4759-4769.	1.1	66
24	Unique Keratinocyte-Specific Effects of Interferon-Î ³ that Protect Skin from Viruses, Identified Using Transcriptional Profiling. Antiviral Therapy, 2003, 8, 541-554.	0.6	65
25	Transcriptional control of K5, K6, K14, and K17 keratin genes by AP-1 and NF-kappaB family members. Gene Expression, 1997, 6, 361-70.	0.5	62
26	A rapid and simple method for introducing specific mutations into any position of DNA leaving all other positions unaltered. Nucleic Acids Research, 1990, 18, 1656-1656.	6.5	61
27	A Characteristic Subset of Psoriasis-Associated Genes Is Induced by Oncostatin-M in Reconstituted Epidermis. Journal of Investigative Dermatology, 2006, 126, 2647-2657.	0.3	58
28	Transcriptional profiling defines the roles of ERK and p38 kinases in epidermal keratinocytes. Journal of Cellular Physiology, 2008, 215, 292-308.	2.0	57
29	Regulation of Keratin Gene Expression: The Role of the Nuclear Receptors for Retinoic Acid, Thyroid Hormone, and Vitamin D3. Journal of Investigative Dermatology, 1992, 98, S42-S49.	0.3	48
30	Specific Organization of the Negative Response Elements for Retinoic Acid and Thyroid Hormone Receptors in Keratin Gene Family. Journal of Investigative Dermatology, 1997, 109, 566-572.	0.3	43
31	Expression of the carcinoma-associated keratin K6 and the role of AP-1 proto-oncoproteins. Gene Expression, 1993, 3, 187-99.	0.5	43
32	Epithelial-specific keratin gene expression: identification of a 300 base-pair controlling segment. Nucleic Acids Research, 1990, 18, 247-253.	6.5	42
33	Identification of the Retinoic Acid and Thyroid Hormone Receptor-Responsive Element in the Human K14 Keratin Gene. Journal of Investigative Dermatology, 1992, 99, 842-847.	0.3	40
34	Thyroid Hormones and Gamma Interferon Specifically Increase K15 Keratin Gene Transcription. Molecular and Cellular Biology, 2004, 24, 3168-3179.	1.1	40
35	Nuclear Proteins Involved in Transcription of the Human K5 Keratin Gene. Journal of Investigative Dermatology, 1992, 99, 206-215.	0.3	39
36	Functional Comparison of the Upstream Regulatory DNA Sequences of Four Human Epidermal Keratin Genes. Journal of Investigative Dermatology, 1991, 96, 162-167.	0.3	37

MIROSLAV BLUMENBERG

#	Article	IF	CITATIONS
37	Transcriptional profiling of epidermal differentiation. Physiological Genomics, 2006, 27, 65-78.	1.0	37
38	Specific and Shared Targets of Ephrin A Signaling in Epidermal Keratinocytes. Journal of Biological Chemistry, 2011, 286, 9419-9428.	1.6	37
39	Transcriptional Regulators of Expression of K#16, the Disease-Associated Keratin. DNA and Cell Biology, 1993, 12, 911-923.	0.9	35
40	Specificity in Stress Response: Epidermal Keratinocytes Exhibit Specialized UV-Responsive Signal Transduction Pathways. DNA and Cell Biology, 2003, 22, 665-677.	0.9	35
41	Transcriptional responses of human epidermal keratinocytes to Oncostatin-M. Cytokine, 2005, 31, 305-313.	1.4	35
42	TGFβ Promotes the Basal Phenotype of Epidermal Keratinocytes: Transcriptional Induction of K#5 and K#14 Keratin Genes. Growth Factors, 1995, 12, 87-97.	0.5	33
43	Cellular Genomic Maps Help Dissect Pathology in Human Skin Disease. Journal of Investigative Dermatology, 2008, 128, 606-615.	0.3	31
44	Profiling and metaanalysis of epidermal keratinocytes responses to epidermal growth factor. BMC Genomics, 2013, 14, 85.	1.2	29
45	Human epidermal keratinocyte: Keratinization processes. , 1997, 78, 1-29.		27
46	A cluster of five nuclear proteins regulates keratin gene transcription. Gene Expression, 1993, 3, 201-13.	0.5	27
47	Evolution of homologous domains of cytoplasmic intermediate filament proteins and lamins Molecular Biology and Evolution, 1989, 6, 53-65.	3.5	26
48	SKINOMICS: Transcriptional Profiling in Dermatology and Skin Biology. Current Genomics, 2012, 13, 363-368.	0.7	26
49	Disease-activated transcription factor: allergic reactions in human skin cause nuclear translocation of STAT-91 and induce synthesis of keratin K17. Molecular and Cellular Biology, 1994, 14, 4759-4769.	1.1	26
50	Chromatin Structure Regulation in Transforming Growth Factor-Î ² -Directed Epithelial-Mesenchymal Transition. Cells Tissues Organs, 2007, 185, 162-174.	1.3	24
51	The homeoprotein DLX3 and tumor suppressor p53 co-regulate cell cycle progression and squamous tumor growth. Oncogene, 2016, 35, 3114-3124.	2.6	24
52	A 300 bp 5' -upstream sequence of a differentiation-dependent rabbit K3 keratin gene can serve as a keratinocyte-specific promoter. Journal of Cell Science, 1993, 105, 303-316.	1.2	24
53	Characterization of Nuclear Protein Binding Sites in the Promoter of Keratin K17 Gene. DNA and Cell Biology, 1996, 15, 65-74.	0.9	22
54	Unique keratinocyte-specific effects of interferon-gamma that protect skin from viruses, identified using transcriptional profiling. Antiviral Therapy, 2003, 8, 541-54.	0.6	22

#	Article	IF	CITATIONS
55	Resistin gene polymorphisms are associated with acne and serum lipid levels, providing a potential nexus between lipid metabolism and inflammation. Archives of Dermatological Research, 2016, 308, 229-237.	1.1	21
56	Meta-Analysis of Transcriptional Responses to Mastitis-Causing Escherichia coli. PLoS ONE, 2016, 11, e0148562.	1.1	21
57	Linkage of human keratin genes. Cytogenetic and Genome Research, 1986, 42, 65-71.	0.6	19
58	Codominant Regulation of Keratin Gene Expression by Cell Surface Receptors and Nuclear Receptors. Experimental Cell Research, 1996, 224, 96-102.	1.2	19
59	Cutaneous microbiome studies in the times of affordable sequencing. Journal of Dermatological Science, 2014, 75, 82-87.	1.0	19
60	Targeting downstream transcription factors and epigenetic modifications following Toll-like receptor 7/8 ligation to forestall tissue injury in anti-Ro60 associated heart block. Journal of Autoimmunity, 2016, 67, 36-45.	3.0	19
61	Regulation of Epidermal Keratin Expression by Retinoic Acid and Thyroid Hormone. Journal of Dermatology, 1992, 19, 774-780.	0.6	18
62	Structural and biochemical changes underlying a keratoderma-like phenotype in mice lacking suprabasal AP1 transcription factor function. Cell Death and Disease, 2015, 6, e1647-e1647.	2.7	17
63	On the role of AP2 in epithelial-specific gene expression. Gene Expression, 1993, 3, 307-15.	0.5	17
64	DNA Microarrays in Dermatology and Skin Biology. OMICS A Journal of Integrative Biology, 2006, 10, 243-260.	1.0	16
65	Delayed skin wound repair in proline-rich protein tyrosine kinase 2 knockout mice. American Journal of Physiology - Cell Physiology, 2014, 306, C899-C909.	2.1	16
66	Cardiac fibroblast transcriptome analyses support a role for interferogenic, profibrotic, and inflammatory genes in anti-SSA/Ro-associated congenital heart block. American Journal of Physiology - Heart and Circulatory Physiology, 2017, 313, H631-H640.	1.5	15
67	Interleukin IL-12 blocks a specific subset of the transcriptional profile responsive to UVB in epidermal keratinocytes. Molecular Immunology, 2006, 43, 1933-1940.	1.0	14
68	Transcriptional profiling defines the effects of nickel in human epidermal keratinocytes. Journal of Cellular Physiology, 2008, 217, 686-692.	2.0	13
69	Comprehensive Transcriptional Profiling of Human Epidermis, Reconstituted Epidermal Equivalents, and Cultured Keratinocytes Using DNA Microarray Chips. Methods in Molecular Biology, 2010, 585, 193-223.	0.4	13
70	Skinomics: past, present and future for diagnostic microarray studies in dermatology. Expert Review of Molecular Diagnostics, 2013, 13, 885-894.	1.5	13
71	Analysis and Meta-analysis of Transcriptional Profiling in Human Epidermis. Methods in Molecular Biology, 2013, 1195, 61-97.	0.4	12
72	Differential Transcriptional Effects of EGFR Inhibitors. PLoS ONE, 2014, 9, e102466.	1.1	12

#	Article	IF	CITATIONS
73	Keratinocyte Detachment-Differentiation Connection Revisited, or Anoikis-Pityriasi Nexus Redux. PLoS ONE, 2014, 9, e100279.	1.1	12
74	Skinomics. Journal of Investigative Dermatology, 2005, 124, viii-x.	0.3	11
75	Ephâ€2B, acting as an extracellular ligand, induces differentiation markers in epidermal keratinocytes. Journal of Cellular Physiology, 2012, 227, 2330-2340.	2.0	11
76	Serum Response Factor Controls Transcriptional Network Regulating Epidermal Function and Hair Follicle Morphogenesis. Journal of Investigative Dermatology, 2013, 133, 608-617.	0.3	11
77	Nexus Between Epidermolysis Bullosa and Transcriptional Regulation by Thyroid Hormone in Epidermal Keratinocytes. Clinical and Translational Science, 2008, 1, 45-49.	1.5	9
78	Introductory Chapter: Transcriptome Analysis. , 0, , .		9
79	Association of TNF-α polymorphisms (â^857, â^863 and â^1031), TNF-α serum level and lipid profile with acne vulgaris. Saudi Journal of Biological Sciences, 2021, 28, 6615-6620.	1.8	9
80	Transcriptional effects of inhibiting epidermal growth factor receptor in keratinocytes. Dermatologica Sinica, 2013, 31, 107-119.	0.2	7
81	Keratinocyte p38δ loss inhibits Ras-induced tumor formation, while systemic p38δ loss enhances skin inflammation in the early phase of chemical carcinogenesis in mouse skin. Molecular Carcinogenesis, 2016, 55, 563-574.	1.3	7
82	Gene profiling: implications in dermatology. Expert Review of Dermatology, 2007, 2, 763-768.	0.3	5
83	Transcriptional changes associated with resistance to inhibitors of epidermal growth factor receptor revealed using metaanalysis. BMC Cancer, 2015, 15, 369.	1.1	4
84	Transcriptional Regulation of Keratin Gene Expression. , 2006, , 93-109.		4
85	Embryonic AP1 Transcription Factor Deficiency Causes a Collodion Baby-Like Phenotype. Journal of Investigative Dermatology, 2017, 137, 1868-1877.	0.3	3
86	Skinomics, transcriptional profiling approaches to molecular and structural biology of epidermis. Seminars in Cutaneous Medicine and Surgery, 2019, 38, E12-E18.	1.6	3
87	Vitamin D3, its receptor and regulation of epidermal keratin gene expression. Epithelial Cell Biology, 1992, 1, 70-5.	0.1	2
88	Skinomics: A New Toolbox to Understand Skin Aging. , 2017, , 1361-1379.		1
89	Regulation of cell cycle and differentiation markers by pathogenic, non-pathogenic and opportunistic skin bacteria. Saudi Journal of Biological Sciences, 2022, 29, 1717-1729.	1.8	1
90	Application of Bioinformatics Methodologies in the Fields of Skin Biology and Dermatology. , 0, , .		0

#	Article	IF	CITATIONS
91	The effects of mechanical stretch on keratinocytes. Ensho Saisei, 2005, 25, 186-191.	0.2	0
92	Regulation of CDKN1A expression in keratinocytes by Distalâ€less 3. FASEB Journal, 2008, 22, 639.1.	0.2	0
93	Skinomics: Using DNA microarrays to guide pharmaco- and immuno- therapies. Journal of Clinical & Experimental Dermatology Research, 2013, S1, .	0.1	Ο
94	Evolutionary Trees of Intermediate Filament Proteins. , 1988, , 337-349.		0
95	Skinomics: A New Toolbox to Understand Skin Aging. , 2015, , 1-19.		0