
Hye-Youn Cho

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6545241/publications.pdf Version: 2024-02-01

HVE-YOUN CHO

#	Article	IF	CITATIONS
1	Role of NRF2 in Protection Against Hyperoxic Lung Injury in Mice. American Journal of Respiratory Cell and Molecular Biology, 2002, 26, 175-182.	2.9	626
2	Nrf2 Defends the Lung from Oxidative Stress. Antioxidants and Redox Signaling, 2006, 8, 76-87.	5.4	411
3	Functional polymorphisms in the transcription factor NRF2 in humans increase the risk of acute lung injury. FASEB Journal, 2007, 21, 2237-2246.	0.5	325
4	The transcription factor NRF2 protects against pulmonary fibrosis. FASEB Journal, 2004, 18, 1258-1260.	0.5	320
5	Gene expression profiling of NRF2-mediated protection against oxidative injury. Free Radical Biology and Medicine, 2005, 38, 325-343.	2.9	230
6	Nrf2 protects against airway disorders. Toxicology and Applied Pharmacology, 2010, 244, 43-56.	2.8	202
7	Nrf2-regulated PPARÎ ³ Expression Is Critical to Protection against Acute Lung Injury in Mice. American Journal of Respiratory and Critical Care Medicine, 2010, 182, 170-182.	5.6	184
8	Hyperoxia Stimulates an Nrf2-ARE Transcriptional Response via ROS-EGFR-PI3K-Akt/ERK MAP Kinase Signaling in Pulmonary Epithelial Cells. Antioxidants and Redox Signaling, 2006, 8, 43-52.	5.4	179
9	Linkage Analysis of Susceptibility to Hyperoxia. American Journal of Respiratory Cell and Molecular Biology, 2002, 26, 42-51.	2.9	171
10	Antiviral Activity of Nrf2 in a Murine Model of Respiratory Syncytial Virus Disease. American Journal of Respiratory and Critical Care Medicine, 2009, 179, 138-150.	5.6	166
11	Oxidative Stress and Antioxidants in the Pathogenesis of Pulmonary Fibrosis: A Potential Role for Nrf2. Antioxidants and Redox Signaling, 2008, 10, 321-332.	5.4	157
12	NADPH Oxidase and ERK Signaling Regulates Hyperoxia-induced Nrf2-ARE Transcriptional Response in Pulmonary Epithelial Cells. Journal of Biological Chemistry, 2004, 279, 42302-42312.	3.4	154
13	Identification of polymorphic antioxidant response elements in the human genome. Human Molecular Genetics, 2007, 16, 1188-1200.	2.9	147
14	Ozone-induced lung inflammation and hyperreactivity are mediated via tumor necrosis factor-α receptors. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2001, 280, L537-L546.	2.9	142
15	Genetic mechanisms of susceptibility to oxidative lung injury in miceâ~†. Free Radical Biology and Medicine, 2007, 42, 433-445.	2.9	100
16	Targeted Deletion of <i>Nrf2</i> Impairs Lung Development and Oxidant Injury in Neonatal Mice. Antioxidants and Redox Signaling, 2012, 17, 1066-1082.	5.4	92
17	Toll-like receptor 4 mediates ozone-induced murine lung hyperpermeability via inducible nitric oxide synthase. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2001, 280, L326-L333.	2.9	88
18	Deficiency in Nrf2-GSH Signaling Impairs Type II Cell Growth and Enhances Sensitivity to Oxidants. American Journal of Respiratory Cell and Molecular Biology, 2007, 37, 3-8.	2.9	88

Hye-Youn Cho

#	Article	IF	CITATIONS
19	Targeted Deletion of Nrf2 Reduces Urethane-Induced Lung Tumor Development in Mice. PLoS ONE, 2011, 6, e26590.	2.5	83
20	Signal Transduction Pathways of Tumor Necrosis Factor–mediated Lung Injury Induced by Ozone in Mice. American Journal of Respiratory and Critical Care Medicine, 2007, 175, 829-839.	5.6	80
21	Functional polymorphisms in Nrf2: implications for human disease. Free Radical Biology and Medicine, 2015, 88, 362-372.	2.9	63
22	Genomic Structure and Variation of Nuclear Factor (Erythroid-Derived 2)-Like 2. Oxidative Medicine and Cellular Longevity, 2013, 2013, 1-24.	4.0	61
23	Protective Role of Matrix Metalloproteinase-9 in Ozone-Induced Airway Inflammation. Environmental Health Perspectives, 2007, 115, 1557-1563.	6.0	49
24	Association of Nrf2 with airway pathogenesis: lessons learned from genetic mouse models. Archives of Toxicology, 2015, 89, 1931-1957.	4.2	40
25	A Polymorphic Antioxidant Response Element Links NRF2/sMAF Binding to Enhanced MAPT Expression and Reduced Risk of Parkinsonian Disorders. Cell Reports, 2016, 15, 830-842.	6.4	40
26	Protective Role of Interleukin-10 in Ozone-Induced Pulmonary Inflammation. Environmental Health Perspectives, 2010, 118, 1721-1727.	6.0	38
27	Sulforaphane enriched transcriptome of lung mitochondrial energy metabolism and provided pulmonary injury protection via Nrf2 in mice. Toxicology and Applied Pharmacology, 2019, 364, 29-44.	2.8	35
28	<i>Noblesse Oblige</i> : NRF2 Functions in the Airways. American Journal of Respiratory Cell and Molecular Biology, 2014, 50, 844-847.	2.9	33
29	Exacerbated Airway Toxicity of Environmental Oxidant Ozone in Mice Deficient inNrf2. Oxidative Medicine and Cellular Longevity, 2013, 2013, 1-14.	4.0	31
30	Association of Nrf2 Polymorphism Haplotypes with Acute Lung Injury Phenotypes in Inbred Strains of Mice. Antioxidants and Redox Signaling, 2015, 22, 325-338.	5.4	30
31	Role of Toll-like receptor-4 in genetic susceptibility to lung injury induced by residual oil fly ash. Physiological Genomics, 2005, 22, 108-117.	2.3	28
32	Determinants of host susceptibility to murine respiratory syncytial virus (RSV) disease identify a role for the innate immunity scavenger receptor MARCO gene in human infants. EBioMedicine, 2016, 11, 73-84.	6.1	24
33	Mitochondrial biology in airway pathogenesis and the role of NRF2. Archives of Pharmacal Research, 2020, 43, 297-320.	6.3	22
34	Genomeâ€wide association mapping of acute lung injury in neonatal inbred mice. FASEB Journal, 2014, 28, 2538-2550.	0.5	20
35	Cardiac Physiologic and Genetic Predictors of Hyperoxia-Induced Acute Lung Injury in Mice. American Journal of Respiratory Cell and Molecular Biology, 2012, 46, 470-478.	2.9	16
36	Glutathione reductase deficiency alters lung development and hyperoxic responses in neonatal mice. Redox Biology, 2021, 38, 101797.	9.0	16

Нуе-Youn Сно

#	Article	IF	CITATIONS
37	Muc5ac null mice are predisposed to spontaneous gastric antro-pyloric hyperplasia and adenomas coupled with attenuated H.pylori-induced corpus mucous metaplasia. Laboratory Investigation, 2019, 99, 1887-1905.	3.7	15
38	Toll-like receptor 4-mediated respiratory syncytial virus disease and lung transcriptomics in differentially susceptible inbred mouse strains. Physiological Genomics, 2019, 51, 630-643.	2.3	13
39	Epigenome-wide association study of bronchopulmonary dysplasia in preterm infants: results from the discovery-BPD program. Clinical Epigenetics, 2022, 14, 57.	4.1	12
40	Nrf2 in Host Defense: Over the Rainbow. Oxidative Medicine and Cellular Longevity, 2013, 2013, 1-3.	4.0	11
41	Role for Mucin-5AC in Upper and Lower Airway Pathogenesis in Mice. Toxicologic Pathology, 2021, 49, 1077-1099.	1.8	10
42	Potential therapeutic targets in Nrf2-dependent protection against neonatal respiratory distress disease predicted by cDNA microarray analysis and bioinformatics tools. Current Opinion in Toxicology, 2016, 1, 125-133.	5.0	9
43	The discovery BPD (D-BPD) program: study protocol of a prospective translational multicenter collaborative study to investigate determinants of chronic lung disease in very low birth weight infants. BMC Pediatrics, 2019, 19, 227.	1.7	5
44	Transcriptomics Underlying Pulmonary Ozone Pathogenesis Regulated by Inflammatory Mediators in Mice. Antioxidants, 2021, 10, 1489.	5.1	5
45	Murine Neonatal Oxidant Lung Injury: NRF2-Dependent Predisposition to Adulthood Respiratory Viral Infection and Protection by Maternal Antioxidant. Antioxidants, 2021, 10, 1874.	5.1	5
46	The Influence of <i>Nrf2</i> on Cardiac Responses to Environmental Stressors. Oxidative Medicine and Cellular Longevity, 2013, 2013, 1-10.	4.0	2
47	Effect of prenatal antioxidant sulforaphane on fetal transcriptomics in mice. FASEB Journal, 2013, 27, 1142.5.	0.5	1
48	NRF2 Alters Mitochondrial Gene Expression in Neonate Mice Exposed to Hyperoxia. Antioxidants, 2022, 11, 760.	5.1	1
49	Enhanced resistance to oxidative lung injury by an Nrf2â€ARE inducer in mice. FASEB Journal, 2008, 22, 918.2.	0.5	0
50	Epigenomeâ€wide association study of bronchopulmonary dysplasia (BPD) in preterm infants: Results from the Discoveryâ€BPD program. FASEB Journal, 2022, 36, .	0.5	0