Charles Henry

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/6545204/charles-henry-publications-by-year.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

56 107 12,750 235 h-index g-index citations papers 261 6.1 14,685 7.1 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
235	An electrochemical paper-based analytical sensor for one-step latex protein detection <i>Analyst, The</i> , 2022 ,	5	1
234	All-solid-state potassium-selective sensor based on carbon black modified thermoplastic electrode. <i>Electrochimica Acta</i> , 2022 , 404, 139762	6.7	1
233	A novel l-cysteine sensor using in-situ electropolymerization of l-cysteine: Potential to simple and selective detection. <i>Talanta</i> , 2022 , 237, 122983	6.2	6
232	Colorimetric Paper-Based Analytical Device for Perfluorooctanesulfonate Detection. <i>ACS ES&T Water</i> , 2022 , 2, 565-572		0
231	Microfluidic-based ion-selective thermoplastic electrode array for point-of-care detection of potassium and sodium ions <i>Mikrochimica Acta</i> , 2022 , 189, 152	5.8	3
230	Simple manipulation of enzyme-linked immunosorbent assay (ELISA) using an automated microfluidic interface <i>Analytical Methods</i> , 2022 , 14, 1774-1781	3.2	1
229	Rapid prototyping of ion-selective electrodes using a low-cost 3D printed internet-of-things (IoT) controlled robot. <i>Talanta</i> , 2022 , 247, 123544	6.2	1
228	Method for analysis of environmental lead contamination in soils. <i>Analyst, The</i> , 2021 , 146, 7520-7527	5	0
227	Synthesis and grafting of diazonium tosylates for thermoplastic electrode immunosensors. <i>Analytical Methods</i> , 2021 , 13, 5056-5064	3.2	2
226	Analysis of Peptides using Asymmetrical Flow Field-flow Fractionation (AF4). <i>Journal of Pharmaceutical Sciences</i> , 2021 , 110, 3969-3972	3.9	0
225	Electrochemical Capillary-Flow Immunoassay for Detecting Anti-SARS-CoV-2 Nucleocapsid Protein Antibodies at the Point of Care. <i>ACS Sensors</i> , 2021 , 6, 4067-4075	9.2	9
224	SECM Investigation of Carbon Composite Thermoplastic Electrodes. <i>Analytical Chemistry</i> , 2021 , 93, 130)4 7 18309	9 3
223	Electrochemical paper-based analytical device for multiplexed, point-of-care detection of cardiovascular disease biomarkers. <i>Sensors and Actuators B: Chemical</i> , 2021 , 330, 129336	8.5	28
222	Design and application of a self-pumping microfluidic staggered herringbone mixer. <i>Microfluidics and Nanofluidics</i> , 2021 , 25, 1	2.8	3
221	Simple biodegradable plastic screen-printing for microfluidic paper-based analytical devices. <i>Sensors and Actuators B: Chemical</i> , 2021 , 331, 129463	8.5	8
220	Thermoplastic Electrodes for Detection of Escherichia coli. <i>Journal of the Electrochemical Society</i> , 2021 , 168, 047509	3.9	2
219	Review R ecent Advances in Sensor Arrays for the Simultaneous Electrochemical Detection of Multiple Analytes. <i>Journal of the Electrochemical Society</i> , 2021 , 168, 057507	3.9	10

(2020-2021)

218	Microfluidic Paper-Based Analytical Devices: From Design to Applications. <i>Chemical Reviews</i> , 2021 , 121, 11835-11885	68.1	42
217	Exploring carbon particle type and plasma treatment to improve electrochemical properties of stencil-printed carbon electrodes. <i>Talanta</i> , 2021 , 221, 121553	6.2	11
216	NFC-enabling smartphone-based portable amperometric immunosensor for hepatitis B virus detection. <i>Sensors and Actuators B: Chemical</i> , 2021 , 326, 128825	8.5	34
215	A facile one-step gold nanoparticles enhancement based on sequential patterned lateral flow immunoassay device for C-reactive protein detection. <i>Sensors and Actuators B: Chemical</i> , 2021 , 329, 129	92 <mark>8</mark> 47	13
214	Flow control in a laminate capillary-driven microfluidic device. <i>Analyst, The</i> , 2021 , 146, 1932-1939	5	7
213	Padlock probe-based rolling circle amplification lateral flow assay for point-of-need nucleic acid detection. <i>Analyst, The</i> , 2021 , 146, 4340-4347	5	4
212	Highly selective simultaneous determination of Cu(ii), Co(ii), Ni(ii), Hg(ii), and Mn(ii) in water samples using microfluidic paper-based analytical devices. <i>Analyst, The</i> , 2021 , 146, 2229-2239	5	12
211	Thermoplastic electrodes as a new electrochemical platform coupled to microfluidic devices for tryptamine determination. <i>Analytica Chimica Acta</i> , 2021 , 1147, 116-123	6.6	7
210	Distance-Based Paper Device for a Naked-Eye Albumin-to-Alkaline Phosphatase Ratio Assay. <i>ACS Sensors</i> , 2021 , 6, 3047-3055	9.2	3
209	Sensors for detecting per- and polyfluoroalkyl substances (PFAS): A critical review of development challenges, current sensors, and commercialization obstacles. <i>Chemical Engineering Journal</i> , 2021 , 417, 129133	14.7	17
208	Pump-Free Microfluidic Device for the Electrochemical Detection of #Acid Glycoprotein. <i>ACS Sensors</i> , 2021 , 6, 2998-3005	9.2	2
207	High spatial resolution fluorescence imagery for optimized pest management within a Huanglongbing-infected citrus grove. <i>Phytopathology</i> , 2021 ,	3.8	1
206	Immobilization of Proteinase K for urine pretreatment to improve diagnostic accuracy of active tuberculosis. <i>PLoS ONE</i> , 2021 , 16, e0257615	3.7	2
205	Redox behavior and surface morphology of polystyrene thermoplastic electrodes. <i>Electrochimica Acta</i> , 2021 , 393, 139069	6.7	3
204	Paper-based analytical devices for virus detection: Recent strategies for current and future pandemics. <i>TrAC - Trends in Analytical Chemistry</i> , 2021 , 144, 116424	14.6	9
203	Plug-and-play assembly of paper-based colorimetric and electrochemical devices for multiplexed detection of metals. <i>Analyst, The</i> , 2021 , 146, 3463-3473	5	10
202	Micromolded Carbon Paste Microelectrodes for Electrogenerated Chemiluminescent Detection on Microfluidic Devices. <i>ChemElectroChem</i> , 2020 , 7, 3244-3252	4.3	О
201	Sealing 3D-printed parts to poly(dimethylsiloxane) for simple fabrication of Microfluidic devices. <i>Analytica Chimica Acta</i> , 2020 , 1124, 78-84	6.6	12

200	Paper-based nuclease protection assay with on-chip sample pretreatment for point-of-need nucleic acid detection. <i>Analytical and Bioanalytical Chemistry</i> , 2020 , 412, 3051-3061	4.4	7
199	Emerging applications of paper-based analytical devices for drug analysis: A review. <i>Analytica Chimica Acta</i> , 2020 , 1116, 70-90	6.6	63
198	Sensitive distance-based paper-based quantification of mercury ions using carbon nanodots and heating-based preconcentration <i>RSC Advances</i> , 2020 , 10, 9884-9893	3.7	17
197	Pump-Free Microfluidic Rapid Mixer Combined with a Paper-Based Channel. ACS Sensors, 2020, 5, 2230-	-2 <u>3,3</u> 8	16
196	Simultaneous electrochemical detection in paper-based analytical devices. <i>Current Opinion in Electrochemistry</i> , 2020 , 23, 1-6	7.2	22
195	Dynamic classification of personal microenvironments using a suite of wearable, low-cost sensors. Journal of Exposure Science and Environmental Epidemiology, 2020 , 30, 962-970	6.7	2
194	Advances in Paper-Based Analytical Devices. Annual Review of Analytical Chemistry, 2020, 13, 85-109	12.5	97
193	Viscosity measurements utilizing a fast-flow microfluidic paper-based device. <i>Sensors and Actuators B: Chemical</i> , 2020 , 319, 128240	8.5	13
192	USB powered microfluidic paper-based analytical devices. <i>Electrophoresis</i> , 2020 , 41, 562-569	3.6	10
191	Anodic stripping voltammetric determination of lead and cadmium with stencil-printed transparency electrodes 2020 , 35-45		
190	Electrochemical paper-based devices: sensing approaches and progress toward practical applications. <i>Lab on A Chip</i> , 2020 , 20, 9-34	7.2	109
189	A microfluidic organotypic device for culture of mammalian intestines ex vivo. <i>Analytical Methods</i> , 2020 , 12, 297-303	3.2	15
188	Rapid Analysis in Continuous-Flow Electrochemical Paper-Based Analytical Devices. <i>ACS Sensors</i> , 2020 , 5, 274-281	9.2	23
187	Review-Chemical and Biological Sensors for Viral Detection. <i>Journal of the Electrochemical Society</i> , 2020 , 167, 037523	3.9	62
186	Disposable glassy carbon stencil printed electrodes for trace detection of cadmium and lead. <i>Analytica Chimica Acta</i> , 2020 , 1103, 58-66	6.6	21
185	Janus Electrochemical Paper-Based Analytical Devices for Metals Detection in Aerosol Samples. <i>Analytical Chemistry</i> , 2020 , 92, 1439-1446	7.8	25
184	Read-by-eye quantification of aluminum (III) in distance-based microfluidic paper-based analytical devices. <i>Analytica Chimica Acta</i> , 2020 , 1100, 156-162	6.6	20
183	A Chemometric Approach Toward Predicting the Relative Aggregation Propensity: A[11-42). Journal of Pharmaceutical Sciences, 2020 , 109, 624-632	3.9	2

(2019-2020)

High-throughput, semi-automated dithiothreitol (DTT) assays for oxidative potential of fine particulate matter. <i>Atmospheric Environment</i> , 2020 , 222, 117132	5.3	10
Paper-based pump-free magnetophoresis. <i>Analytical Methods</i> , 2020 , 12, 5177-5185	3.2	7
Dual Sample Preconcentration for Simultaneous Quantification of Metal Ions Using Electrochemical and Colorimetric Assays. <i>ACS Sensors</i> , 2020 , 5, 3999-4008	9.2	10
Fluorescent Dye Paper-Based Method for Assessment of Pesticide Coverage on Leaves and Trees: A Citrus Grove Case Study. <i>Journal of Agricultural and Food Chemistry</i> , 2020 , 68, 14009-14014	5.7	4
Janus electrochemistry: Simultaneous electrochemical detection at multiple working conditions in a paper-based analytical device. <i>Analytica Chimica Acta</i> , 2019 , 1056, 88-95	6.6	34
An ultra-sensitive capacitive microwire sensor for pathogen-specific serum antibody responses. <i>Biosensors and Bioelectronics</i> , 2019 , 131, 46-52	11.8	17
A Nuclease Protection ELISA Assay for Colorimetric and Electrochemical Detection of Nucleic Acids. <i>Analytical Methods</i> , 2019 , 11, 1027-1034	3.2	3
Polycaprolactone-enabled sealing and carbon composite electrode integration into electrochemical microfluidics. <i>Lab on A Chip</i> , 2019 , 19, 2589-2597	7.2	18
Superomniphobic Papers for On-Paper pH Sensors. Advanced Materials Interfaces, 2019, 6, 1900232	4.6	9
Emerging investigator series: oxidative potential of diesel exhaust particles: role of fuel, engine load, and emissions control. <i>Environmental Sciences: Processes and Impacts</i> , 2019 , 21, 819-830	4.3	1
Rapid Bacteria Detection at Low Concentrations Using Sequential Immunomagnetic Separation and Paper-Based Isotachophoresis. <i>Analytical Chemistry</i> , 2019 , 91, 9623-9630	7.8	34
Multilayered Microfluidic Paper-Based Devices: Characterization, Modeling, and Perspectives. <i>Analytical Chemistry</i> , 2019 , 91, 8966-8972	7.8	21
Increasing Applications of Graphite Thermoplastic Electrodes with Aryl Diazonium Grafting. <i>ChemElectroChem</i> , 2019 , 6, 4811-4816	4.3	9
Rotary manifold for automating a paper-based immunoassay RSC Advances, 2019, 9, 29078-29086	3.7	12
Critical Components and Innovations in Paper-Based Analytical Devices 2019, 47-87		1
Beyond the lateral flow assay: A review of paper-based microfluidics. <i>Microelectronic Engineering</i> , 2019 , 206, 45-54	2.5	146
Thermoplastic Electrode Arrays in Electrochemical Paper-Based Analytical Devices. <i>Analytical Chemistry</i> , 2019 , 91, 2431-2438	7.8	29
Electrochemical Dithiothreitol Assay for Large-Scale Particulate Matter Studies. <i>Aerosol Science and Technology</i> , 2019 , 53, 268-275	3.4	3
	Paper-based pump-free magnetophoresis. Analytical Methods, 2020, 12, 5177-5185 Dual Sample Preconcentration for Simultaneous Quantification of Metal Ions Using Electrochemical and Colorimetric Assays. ACS Sensors, 2020, 5, 3999-4008 Fluorescent Dye Paper-Based Method for Assessment of Pesticide Coverage on Leaves and Trees: A Citrus Grove Case Study. Journal of Agricultural and Food Chemistry, 2020, 68, 14009-14014 Janus electrochemistry: Simultaneous electrochemical detection at multiple working conditions in a paper-based analytical device. Analytica Chimica Acta, 2019, 1056, 88-95 An ultra-sensitive capacitive microwire sensor for pathogen-specific serum antibody responses. Biosensors and Bioelectronics, 2019, 131, 46-52 A Nuclease Protection ELISA Assay for Colorimetric and Electrochemical Detection of Nucleic Acids. Analytical Methods, 2019, 11, 1027-1034 Polycaprolactone-enabled sealing and carbon composite electrode integration into electrochemical microfluidics. Lab on A Chip, 2019, 19, 2589-2597 Superomniphobic Papers for On-Paper pH Sensors. Advanced Materials Interfaces, 2019, 6, 1900232 Emerging investigator series: oxidative potential of diesel exhaust particles: role of fuel, engine load, and emissions control. Environmental Sciences: Processes and Impacts, 2019, 21, 819-830 Rapid Bacteria Detection at Low Concentrations Using Sequential Immunomagnetic Separation and Paper-Based Isotachophoresis. Analytical Chemistry, 2019, 91, 9623-9630 Multilayered Microfluidic Paper-Based Devices: Characterization, Modeling, and Perspectives. Analytical Chemistry, 2019, 91, 8966-8972 Increasing Applications of Graphite Thermoplastic Electrodes with Aryl Diazonium Grafting. ChemElectroChem, 2019, 6, 4811-4816 Rotary manifold for automating a paper-based immunoassay. RSC Advances, 2019, 9, 29078-29086 Critical Components and Innovations in Paper-Based Analytical Devices 2019, 47-87 Beyond the lateral flow assay: A review of paper-based microfluidics. Microelectronic Engineering, 2019, 206, 45-54 Th	Paper-based pump-free magnetophoresis. Analytical Methods, 2020, 12, 5177-5185 3.2 Dual Sample Preconcentration for Simultaneous Quantification of Metal Ions Using Electrochemical and Colorimetric Assays. ACS Sensors, 2020, 5, 3999-4008 Fluorescent Dye Paper-Based Method for Assessment of Pesticide Coverage on Leaves and Trees: A Citrus Grove Case Study. Journal of Agricultural and Food Chemistry, 2020, 68, 14009-14014 Janus electrochemistry: Simultaneous electrochemical detection at multiple working conditions in a paper-based analytical device. Analytica Chimica Acta, 2019, 1056, 88-95 An ultra-sensitive capacitive microwire sensor for pathogen-specific serum antibody responses. Biosensors and Bioelectronics, 2019, 131, 46-52 A Nuclease Protection ELISA Assay for Colorimetric and Electrochemical Detection of Nucleic Acids. Analytical Methods, 2019, 11, 1027-1034 Polycaprolactone-enabled sealing and carbon composite electrode integration into electrochemical microfluidics. Lab on A Chip, 2019, 19, 2589-2597 Superomniphobic Papers for On-Paper pH Sensors. Advanced Materials Interfaces, 2019, 6, 1900232 Emerging investigator series: oxidative potential of diesel exhaust particles: role of fuel, engine load, and emissions control. Environmental Sciences: Processes and Impacts, 2019, 21, 819-830 Rapid Bacteria Detection at Low Concentrations Using Sequential Immunomagnetic Separation and Paper-Based Isotachophoresis. Analytical Chemistry, 2019, 91, 9623-9630 Multilayered Microfluidic Paper-Based Devices: Characterization, Modeling, and Perspectives. Analytical Chemistry, 2019, 91, 8966-8972 Increasing Applications of Graphite Thermoplastic Electrodes with Aryl Diazonium Grafting. ChemElectrochem. 2019, 6, 4811-4816 Rotary manifold for automating a paper-based immunoassay. RSC Advances, 2019, 9, 29078-29086 37 Critical Components and Innovations in Paper-Based Analytical Devices 2019, 47-87 Thermoplastic Electrode Arrays in Electrochemical Paper-Based Analytical Devices. Analytical Chemistry, 2019,

164	Solid-Phase Extraction Coupled to a Paper-Based Technique for Trace Copper Detection in Drinking Water. <i>Environmental Science & Environmental Science</i>	10.3	43
163	Powering ex vivo tissue models in microfluidic systems. <i>Lab on A Chip</i> , 2018 , 18, 1399-1410	7.2	42
162	"Dip-and-read" paper-based analytical devices using distance-based detection with color screening. <i>Lab on A Chip</i> , 2018 , 18, 1485-1493	7.2	43
161	Electrochemical biosensor system using a CMOS microelectrode array provides high spatially and temporally resolved images. <i>Biosensors and Bioelectronics</i> , 2018 , 114, 78-88	11.8	21
160	Rapid flow in multilayer microfluidic paper-based analytical devices. <i>Lab on A Chip</i> , 2018 , 18, 793-802	7.2	66
159	Design considerations for reducing sample loss in microfluidic paper-based analytical devices. <i>Analytica Chimica Acta</i> , 2018 , 1017, 20-25	6.6	29
158	Highly transparent tetraaminophthalocyanine polymer films for DSSC cathodes. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 2767-2774	13	13
157	Observation of Dynamic Surfactant Adsorption Facilitated by Divalent Cation Bridging. <i>Langmuir</i> , 2018 , 34, 1550-1556	4	13
156	An Instrument-free Detection of Antioxidant Activity Using Paper-based Analytical Devices Coated with Nanoceria. <i>Analytical Sciences</i> , 2018 , 34, 97-102	1.7	20
155	IR-Compatible PDMS microfluidic devices for monitoring of enzyme kinetics. <i>Analytica Chimica Acta</i> , 2018 , 1021, 95-102	6.6	21
154	Selective Distance-Based K Quantification on Paper-Based Microfluidics. <i>Analytical Chemistry</i> , 2018 , 90, 4894-4900	7.8	69
153	Laminated and infused Parafilm - paper for paper-based analytical devices. <i>Sensors and Actuators B: Chemical</i> , 2018 , 255, 3654-3661	8.5	24
152	Electrochemical impedance-based DNA sensor using pyrrolidinyl peptide nucleic acids for tuberculosis detection. <i>Analytica Chimica Acta</i> , 2018 , 1044, 102-109	6.6	52
151	Electrophoretic Separations on Parafilm-Paper-Based Analytical Devices. <i>Sensors and Actuators B: Chemical</i> , 2018 , 273, 1022-1028	8.5	8
150	Microfluidic devices containing thin rock sections for oil recovery studies. <i>Microfluidics and Nanofluidics</i> , 2018 , 22, 1	2.8	11
149	Denaturation and Aggregation of Interferon-In Aqueous Solution. <i>Pharmaceutical Research</i> , 2018 , 35, 137	4.5	4
148	High throughput detection of deamidation using S-(5Sadenosyl)-l-homocysteine hydrolase and a fluorogenic reagent. <i>Journal of Pharmaceutical and Biomedical Analysis</i> , 2018 , 156, 323-327	3.5	1
147	Development of Paper-Based Analytical Devices for Minimizing the Viscosity Effect in Human Saliva. <i>Theranostics</i> , 2018 , 8, 3797-3807	12.1	19

Quantitative colorimetric paper analytical devices based on radial distance measurements for aqueous metal determination. <i>Analyst, The</i> , 2018 , 143, 3085-3090	5	29
Highly Sensitive Detection of Salmonella typhimurium Using a Colorimetric Paper-Based Analytical Device Coupled with Immunomagnetic Separation. <i>Analytical Chemistry</i> , 2018 , 90, 1035-1043	7.8	127
Single board computing system for automated colorimetric analysis on low-cost analytical devices. <i>Analytical Methods</i> , 2018 , 10, 5282-5290	3.2	8
Uncovering the Formation of Color Gradients for Glucose Colorimetric Assays on Microfluidic Paper-Based Analytical Devices by Mass Spectrometry Imaging. <i>Analytical Chemistry</i> , 2018 , 90, 11949-1	195 ⁸ 4	33
Personal Exposure to PM Black Carbon and Aerosol Oxidative Potential using an Automated Microenvironmental Aerosol Sampler (AMAS). <i>Environmental Science & Environmental Scie</i>	7 ⁻¹ /12/	'5 ²⁰
Development of an Electrochemical Paper-Based Analytical Device for Trace Detection of Virus Particles. <i>Analytical Chemistry</i> , 2018 , 90, 7777-7783	7.8	50
Paper-Based Enzyme Competition Assay for Detecting Falsified Lactam Antibiotics. <i>ACS Sensors</i> , 2018 , 3, 1299-1307	9.2	19
A distance-based paper sensor for the determination of chloride ions using silver nanoparticles. <i>Analyst, The</i> , 2018 , 143, 3867-3873	5	36
Detection of Analgesics and Sedation Drugs in Whiskey Using Electrochemical Paper-based Analytical Devices. <i>Electroanalysis</i> , 2018 , 30, 2250-2257	3	33
Colorimetric and Electrochemical Bacteria Detection Using Printed Paper- and Transparency-Based Analytic Devices. <i>Analytical Chemistry</i> , 2017 , 89, 3613-3621	7.8	138
Boron Doped Diamond Paste Electrodes for Microfluidic Paper-Based Analytical Devices. <i>Analytical Chemistry</i> , 2017 , 89, 4100-4107	7.8	64
Multiplex Paper-Based Colorimetric DNA Sensor Using Pyrrolidinyl Peptide Nucleic Acid-Induced AgNPs Aggregation for Detecting MERS-CoV, MTB, and HPV Oligonucleotides. <i>Analytical Chemistry</i> , 2017 , 89, 5428-5435	7.8	219
Utilizing Paper-Based Devices for Antimicrobial-Resistant Bacteria Detection. <i>Angewandte Chemie</i> , 2017 , 129, 6990-6994	3.6	8
Utilizing Paper-Based Devices for Antimicrobial-Resistant Bacteria Detection. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 6886-6890	16.4	74
Electrochemical paper-based peptide nucleic acid biosensor for detecting human papillomavirus. <i>Analytica Chimica Acta</i> , 2017 , 952, 32-40	6.6	134
Point-of-need simultaneous electrochemical detection of lead and cadmium using low-cost stencil-printed transparency electrodes. <i>Analytica Chimica Acta</i> , 2017 , 981, 24-33	6.6	66
A selective distance-based paper analytical device for copper(II) determination using a porphyrin derivative. <i>Talanta</i> , 2017 , 174, 493-499	6.2	56
Versatile fabrication of paper-based microfluidic devices with high chemical resistance using scholar glue and magnetic masks. <i>Analytica Chimica Acta</i> , 2017 , 974, 63-68	6.6	37
	aqueous metal determination. <i>Analyst, The,</i> 2018, 143, 3085-3090 Highly Sensitive Detection of Salmonella typhimurium Using a Colorimetric Paper-Based Analytical Device Coupled with Immunomagnetic Separation. <i>Analytical Chemistry,</i> 2018, 90, 1035-1043 Single board computing system for automated colorimetric analysis on low-cost analytical devices. <i>Analytical Methods,</i> 2018, 10, 5282-5290 Uncovering the Formation of Color Gradients for Glucose Colorimetric Assays on Microfluidic Paper-Based Analytical Devices by Mass Spectrometry Imaging. <i>Analytical Chemistry,</i> 2018, 90, 11949-1 Personal Exposure to PM Black Carbon and Aerosol Oxidative Potential using an Automated Microenvironmental Aerosol Sampler (AMAS). <i>Environmental Science & Amp; Technology,</i> 2018, 52, 1126 Development of an Electrochemical Paper-Based Analytical Device for Trace Detection of Virus Particles. <i>Analytical Chemistry,</i> 2018, 90, 7777-7783 Paper-Based Enzyme Competition Assay for Detecting Falsified Flactam Antibiotics. <i>ACS Sensors,</i> 2018, 31, 299-1307 A distance-based paper sensor for the determination of chloride ions using silver nanoparticles. <i>Analysts, The,</i> 2018, 143, 3867-3873 Detection of Analgesics and Sedation Drugs in Whiskey Using Electrochemical Paper-based Analytical Devices. <i>Electroanalysis,</i> 2018, 30, 2250-2257 Colorimetric and Electrochemical Bacteria Detection Using Printed Paper- and Transparency-Based Analytical Devices. <i>Analytical Chemistry,</i> 2017, 89, 3613-3621 Boron Doped Diamond Paste Electrodes for Microfluidic Paper-Based Analytical Devices. <i>Analytical Chemistry,</i> 2017, 89, 5428-5435 Utilizing Paper-Based Devices for Antimicrobial-Resistant Bacteria Detection. <i>Angewandte Chemie-International Edition,</i> 2017, 56, 6886-6890 Electrochemical paper-based Devices for Antimicrobial-Resistant Bacteria Detection. <i>Angewandte Chemie-International Edition,</i> 2017, 56, 6886-6890 Electrochemical paper-based peptide nucleic acid biosensor for detecting human papillomavirus. <i>Analytica Chimica Acta,</i> 2017, 752,	Highly Sensitive Detection of Salmonella typhimurium Using a Colorimetric Paper-Based Analytical Device Coupled with Immunomagnetic Separation. Analytical Chemistry, 2018, 90, 1035-1043 Single board computing system for automated colorimetric analysis on low-cost analytical devices. Analytical Methods, 2018, 10, 5282-5290 Uncovering the Formation of Color Gradients for Clucose Colorimetric Assays on Microfluidic Paper-Based Analytical Devices by Mass Spectrometry Imaging, Analytical Chemistry, 2018, 90, 11949-11954 Personal Exposure to PM Black Carbon and Aerosol Oxidative Potential using an Automated Microenvironmental Aerosol Sampler (AMAS). Environmental Science & amp; Technology, 2018, 52, 11267-19127 Development of an Electrochemical Paper-Based Analytical Device for Trace Detection of Virus Particles. Analytical Chemistry, 2018, 90, 7777-7783 Paper-Based Enzyme Competition Assay for Detecting Falsified Elactam Antibiotics. ACS Sensors, 2018, 31, 1299-1307 A distance-based paper sensor for the determination of chloride ions using silver nanoparticles. Analyst., The, 2018, 143, 3867-3873 Detection of Analgesics and Seation Drugs in Whiskey Using Electrochemical Paper-based Analytical Devices. Electroanalysis, 2018, 30, 2250-2257 Colorimetric and Electrochemical Bacteria Detection Using Printed Paper- and Transparency-Based Analytical Devices. Analytical Chemistry, 2017, 89, 4100-4107 Multiplex Paper-Based Colorimetric DNA Sensor Using Pyrrolidinyl Peptide Nucleic Acid-Induced AgNPs Aggregation for Detecting MERS-CoV, MTB, and HPV Oligonucleotides. Analytical Chemistry, 2017, 89, 4100-4107 Multiplex Paper-Based Devices for Antimicrobial-Resistant Bacteria Detection. Angewandte Chemie-International Edition, 2017, 56, 6886-6890 Utilizing Paper-Based Devices for Antimicrobial-Resistant Bacteria Detection Angewandte Chemie-International Edition, 2017, 55, 6886-6890 Utilizing Paper-Based Devices for Antimicrobial-Resistant Bacteria Detection Angewandte Chemie-International Edition, 2017, 95, 6886-6890

128	Paper-Based Microfluidic Devices: Emerging Themes and Applications. <i>Analytical Chemistry</i> , 2017 , 89, 71-91	7.8	342
127	Paper-based microfluidics for experimental design: screening masking agents for simultaneous determination of Mn(II) and Co(II). <i>Analytical Methods</i> , 2017 , 9, 534-540	3.2	19
126	Low-Cost Reusable Sensor for Cobalt and Nickel Detection in Aerosols Using Adsorptive Cathodic Square-Wave Stripping Voltammetry. <i>Journal of Electroanalytical Chemistry</i> , 2017 , 805, 75-82	4.1	17
125	Patternable Solvent-Processed Thermoplastic Graphite Electrodes. <i>Journal of the American Chemical Society</i> , 2017 , 139, 12623-12631	16.4	42
124	A paper-based colorimetric spot test for the identification of adulterated whiskeys. <i>Chemical Communications</i> , 2017 , 53, 7957-7960	5.8	27
123	AgNP/Bi/Nafion-modified Disposable Electrodes for Sensitive Zn(II), Cd(II), and Pb(II) Detection in Aerosol Samples. <i>Electroanalysis</i> , 2017 , 29, 880-889	3	30
122	Development and evaluation of an ultrasonic personal aerosol sampler. <i>Indoor Air</i> , 2017 , 27, 409-416	5.4	55
121	Role of Buffers in Protein Formulations. <i>Journal of Pharmaceutical Sciences</i> , 2017 , 106, 713-733	3.9	79
120	Degassed PDMS pump for controlled extraction from dried filter samples in microfluidic devices. <i>Analytical Methods</i> , 2016 , 8, 8266-8271	3.2	3
119	Development of Electrochemical Paper-based Glucose Sensor Using Cellulose-4-aminophenylboronic Acid-modified Screen-printed Carbon Electrode. <i>Electroanalysis</i> , 2016 , 28, 462-468	3	44
118	Pesticide analysis using nanoceria-coated paper-based devices as a detection platform. <i>Analyst, The</i> , 2016 , 141, 1837-46	5	74
117	Stability of lyophilized teriparatide, PTH(1-34), after reconstitution. <i>European Journal of Pharmaceutics and Biopharmaceutics</i> , 2016 , 99, 84-93	5.7	4
116	Paper-based analytical devices for environmental analysis. <i>Analyst, The</i> , 2016 , 141, 1874-87	5	200
115	Characterizing nonconstant instrumental variance in emerging miniaturized analytical techniques. <i>Analytica Chimica Acta</i> , 2016 , 915, 64-73	6.6	4
114	Manganese Detection Using Stencil-printed Carbon Ink Electrodes on Transparency Film. <i>Electroanalysis</i> , 2016 , 28, 679-684	3	21
113	Electrochemistry on Paper-based Analytical Devices: A Review. <i>Electroanalysis</i> , 2016 , 28, 1420-1436	3	182
112	Design of an integrated microelectrode array system for high spatiotemporal resolution chemical imaging 2016 ,		2
111	Label-free detection of C-reactive protein using an electrochemical DNA immunoassay. <i>Sensing and Bio-Sensing Research</i> , 2016 , 8, 14-19	3.3	30

(2014-2016)

110	Graphene-polyaniline modified electrochemical droplet-based microfluidic sensor for high-throughput determination of 4-aminophenol. <i>Analytica Chimica Acta</i> , 2016 , 925, 51-60	6.6	57
109	Development of a Quasi-Steady Flow Electrochemical Paper-Based Analytical Device. <i>Analytical Chemistry</i> , 2016 , 88, 10639-10647	7.8	52
108	Electrochemical paper-based microfluidic devices. <i>Electrophoresis</i> , 2015 , 36, 1811-24	3.6	133
107	Multiplexed paper analytical device for quantification of metals using distance-based detection. Lab on A Chip, 2015, 15, 2808-18	7.2	170
106	Fabrication of IR-transparent microfluidic devices by anisotropic etching of channels in CaF2. <i>Lab on A Chip</i> , 2015 , 15, 4364-8	7.2	16
105	Electrochemical detection in paper-based analytical devices using microwire electrodes. <i>Analytica Chimica Acta</i> , 2015 , 891, 247-54	6.6	69
104	Spatiotemporal norepinephrine mapping using a high-density CMOS microelectrode array. <i>Lab on A Chip</i> , 2015 , 15, 4075-82	7.2	21
103	Recent developments in paper-based microfluidic devices. <i>Analytical Chemistry</i> , 2015 , 87, 19-41	7.8	843
102	Analysis of Nitric Oxide from Chemical Donors Using CMOS Platinum Microelectrodes. <i>Electroanalysis</i> , 2015 , 27, 1104-1109	3	6
101	Pseudomonas moraviensis subsp. stanleyae, a bacterial endophyte of hyperaccumulator Stanleya pinnata, is capable of efficient selenite reduction to elemental selenium under aerobic conditions. <i>Journal of Applied Microbiology</i> , 2015 , 119, 400-10	4.7	39
100	Calibration-free quantitation in microchip zone electrophoresis with conductivity detection. <i>Electrophoresis</i> , 2015 , 36, 1927-34	3.6	1
99	Sensitive electrochemical sensor using a graphene-polyaniline nanocomposite for simultaneous detection of Zn(II), Cd(II), and Pb(II). <i>Analytica Chimica Acta</i> , 2015 , 874, 40-8	6.6	194
98	Low cost, simple three dimensional electrochemical paper-based analytical device for determination of p-nitrophenol. <i>Electrochimica Acta</i> , 2014 , 130, 771-777	6.7	116
97	Multilayer paper-based device for colorimetric and electrochemical quantification of metals. <i>Analytical Chemistry</i> , 2014 , 86, 3555-62	7.8	256
96	LABORATORY EVALUATION OF A MICROFLUIDIC ELECTROCHEMICAL SENSOR FOR AEROSOL OXIDATIVE LOAD. <i>Aerosol Science and Technology</i> , 2014 , 48, 489-497	3.4	19
95	A Simple Microfluidic Electrochemical HPLC Detector for Quantifying Fenton Reactivity from Welding Fumes. <i>Analytical Methods</i> , 2014 , 6, 8180-8186	3.2	12
94	Sensitive, selective analysis of selenium oxoanions using microchip electrophoresis with contact conductivity detection. <i>Analytical Chemistry</i> , 2014 , 86, 8425-32	7.8	15
93	Colorimetric paper-based detection of Escherichia coli, Salmonella spp., and Listeria monocytogenes from large volumes of agricultural water. <i>Journal of Visualized Experiments</i> , 2014 ,	1.6	14

92	Rapid detection of transition metals in welding fumes using paper-based analytical devices. <i>Annals of Occupational Hygiene</i> , 2014 , 58, 413-23		18
91	One-step polymer screen-printing for microfluidic paper-based analytical device (PAD) fabrication. <i>Analyst, The</i> , 2014 , 139, 6580-8	5	121
90	Electrochemical detection of glucose from whole blood using paper-based microfluidic devices. <i>Analytica Chimica Acta</i> , 2013 , 788, 39-45	6.6	159
89	Microfluidic paper-based analytical device for aerosol oxidative activity. <i>Environmental Science & Environmental Science</i>	10.3	68
88	A microfluidic paper-based analytical device for rapid quantification of particulate chromium. <i>Analytica Chimica Acta</i> , 2013 , 800, 50-5	6.6	83
87	Determination of aerosol oxidative activity using silver nanoparticle aggregation on paper-based analytical devices. <i>Analyst, The</i> , 2013 , 138, 6766-73	5	46
86	Potential of Microfluidics and Single Cell Analysis in Metabolomics (Micrometabolomics) 2013 , 239-259		1
85	Construction and electrochemical characterization of microelectrodes for improved sensitivity in paper-based analytical devices. <i>Analytical Chemistry</i> , 2013 , 85, 5233-9	7.8	69
84	Spatially resolved electrochemical sensing of chemical gradients. <i>Lab on A Chip</i> , 2013 , 13, 208-11	7.2	7
83	Overcoming Challenges in Using Microchip Electrophoresis for Extended Monitoring Applications 2013 , 177-200		1
82	Simple, distance-based measurement for paper analytical devices. <i>Lab on A Chip</i> , 2013 , 13, 2397-404	7.2	237
81	Electrophoretic separations in poly(dimethylsiloxane) microchips using a mixture of ionic and zwitterionic surfactants. <i>Electrophoresis</i> , 2012 , 33, 379-87	3.6	14
80	Microfluidic paper-based analytical device for particulate metals. <i>Analytical Chemistry</i> , 2012 , 84, 4474-86	0 7.8	241
79	Mapping spatiotemporal molecular distributions using a microfluidic array. <i>Analytical Chemistry</i> , 2012 , 84, 1360-6	7.8	7
78	Microfluidic electrochemical sensor for on-line monitoring of aerosol oxidative activity. <i>Journal of the American Chemical Society</i> , 2012 , 134, 10562-8	16.4	63
77	Simple silver nanoparticle colorimetric sensing for copper by paper-based devices. <i>Talanta</i> , 2012 , 99, 552-7	6.2	151
76	Competitive, non-competitive, and mixed format cleavable tag immunoassays. <i>Methods</i> , 2012 , 56, 166-7	73 .6	3
75	Sodium dodecyl sulfate-modified electrochemical paper-based analytical device for determination of dopamine levels in biological samples. <i>Analytica Chimica Acta</i> , 2012 , 744, 1-7	6.6	80

(2009-2012)

74	Electrophoretic separations in poly(dimethylsiloxane) microchips using mixtures of ionic, nonionic and zwitterionic surfactants. <i>Electrophoresis</i> , 2012 , 33, 2875-83	3.6	8
73	Development of a paper-based analytical device for colorimetric detection of select foodborne pathogens. <i>Analytical Chemistry</i> , 2012 , 84, 2900-7	7.8	346
72	Advances in microfluidics for environmental analysis. <i>Analyst, The</i> , 2012 , 137, 24-34	5	162
71	Blood separation on microfluidic paper-based analytical devices. <i>Lab on A Chip</i> , 2012 , 12, 3392-8	7. 2	236
70	Characterization of Novel Microelectrode Geometries for Detection of Neurotransmitters. <i>IEEE Sensors Journal</i> , 2012 , 12, 1187-1192	4	12
69	A low-cost, simple, and rapid fabrication method for paper-based microfluidics using wax screen-printing. <i>Analyst, The</i> , 2011 , 136, 77-82	5	443
68	Culturing and investigation of stress-induced lipid accumulation in microalgae using a microfluidic device. <i>Analytical and Bioanalytical Chemistry</i> , 2011 , 400, 245-53	4.4	37
67	Protonated diamines as anion-binding agents and their utility in capillary electrophoresis separations. <i>Electrophoresis</i> , 2011 , 32, 2986-93	3.6	4
66	Poly(dimethylsiloxane) cross-linked carbon paste electrodes for microfluidic electrochemical sensing. <i>Analyst, The</i> , 2011 , 136, 3177-84	5	43
65	Rapid analysis of perchlorate in drinking water at parts per billion levels using microchip electrophoresis. <i>Analytical Chemistry</i> , 2010 , 82, 3426-9	7.8	24
64	Lab-on-paper with dual electrochemical/colorimetric detection for simultaneous determination of gold and iron. <i>Analytical Chemistry</i> , 2010 , 82, 1727-32	7.8	232
63	Use of multiple colorimetric indicators for paper-based microfluidic devices. <i>Analytica Chimica Acta</i> , 2010 , 674, 227-33	6.6	286
62	Photopatternable Carbon Electrodes for Chip-Based Electrochemical Detection. <i>Electroanalysis</i> , 2009 , 21, 2171-2174	3	11
61	Improving MCE with electrochemical detection using a bubble cell and sample stacking techniques. <i>Electrophoresis</i> , 2009 , 30, 3339-46	3.6	17
60	High-sensitivity microchip electrophoresis determination of inorganic anions and oxalate in atmospheric aerosols with adjustable selectivity and conductivity detection. <i>Journal of Chromatography A</i> , 2009 , 1216, 1503-10	4.5	35
59	Analysis of oxidative stress biomarkers using a simultaneous competitive/non-competitive micromosaic immunoassay. <i>Analytica Chimica Acta</i> , 2009 , 640, 1-6	6.6	10
58	Review: Microfluidic applications in metabolomics and metabolic profiling. <i>Analytica Chimica Acta</i> , 2009 , 653, 23-35	6.6	104
57	Interfacing microchip electrophoresis to a growth tube particle collector for semicontinuous monitoring of aerosol composition. <i>Analytical Chemistry</i> , 2009 , 81, 10029-37	7.8	27

56	Evaporation from microreservoirs. <i>Lab on A Chip</i> , 2009 , 9, 1780-8	7.2	23
55	Electrochemical detection for paper-based microfluidics. <i>Analytical Chemistry</i> , 2009 , 81, 5821-6	7.8	902
54	Electrode array detector for microchip capillary electrophoresis. <i>Analyst, The</i> , 2009 , 134, 486-92	5	41
53	Chapter 7 Tools to Enhance Membrane Protein Crystallization. <i>Current Topics in Membranes</i> , 2009 , 151	-1 <u>78</u>	
52	Measuring reaction rates on single particles in a microfluidic device. Lab on A Chip, 2008, 8, 865-7	7.2	4
51	Improving the compatibility of contact conductivity detection with microchip electrophoresis using a bubble cell. <i>Analytical Chemistry</i> , 2008 , 80, 7624-30	7.8	19
50	Competitive immunoassays for simultaneous detection of metabolites and proteins using micromosaic patterning. <i>Analytical Chemistry</i> , 2008 , 80, 444-50	7.8	39
49	Evanescent field response to immunoassay layer thickness on planar waveguides. <i>Applied Physics Letters</i> , 2008 , 93, 101110	3.4	8
48	Microfluidic mixing via transverse electrokinetic effects in a planar microchannel. <i>Microfluidics and Nanofluidics</i> , 2008 , 5, 493-505	2.8	21
47	Influence of polymer structure on electroosmotic flow and separation efficiency in successive multiple ionic layer coatings for microchip electrophoresis. <i>Electrophoresis</i> , 2008 , 29, 3128-34	3.6	24
46	Microfluidic Protein Patterning on Silicon Nitride Using Solvent Extracted Poly(dimethylsiloxane) Channels. <i>Sensors and Actuators B: Chemical</i> , 2008 , 129, 811-817	8.5	10
45	Detection of cardiac biomarkers using micellar electrokinetic chromatography and a cleavable tag immunoassay. <i>Analytical Chemistry</i> , 2007 , 79, 5249-56	7.8	30
44	Integrated membrane filters for minimizing hydrodynamic flow and filtering in microfluidic devices. <i>Analytical Chemistry</i> , 2007 , 79, 6249-54	7.8	34
43	Thermoset polyester as an alternative material for microchip electrophoresis/electrochemistry. <i>Electrophoresis</i> , 2007 , 28, 1123-9	3.6	15
42	Separation of common organic and inorganic anions in atmospheric aerosols using a piperazine buffer and capillary electrophoresis. <i>Journal of Chromatography A</i> , 2007 , 1154, 400-6	4.5	18
41	Plasma Modification of PDMS Microfluidic Devices for Control of Electroosmotic Flow. <i>Plasma Processes and Polymers</i> , 2007 , 4, 414-424	3.4	26
40	Second virial coefficient determination of a therapeutic peptide by self-interaction chromatography. <i>Biopolymers</i> , 2006 , 84, 527-33	2.2	24
39	Effect of buffer species on the thermally induced aggregation of interferon-tau. <i>Journal of Pharmaceutical Sciences</i> , 2006 , 95, 1212-26	3.9	43

38	Microchip capillary electrophoresis: an introduction. <i>Methods in Molecular Biology</i> , 2006 , 339, 1-10	1.4	13
37	Polyelectrolyte coatings for microchip capillary electrophoresis. <i>Methods in Molecular Biology</i> , 2006 , 339, 57-64	1.4	3
36	Analysis of anions in ambient aerosols by microchip capillary electrophoresis. <i>Analyst, The</i> , 2006 , 131, 1226-31	5	9
35	Multi-analyte immunoassay using cleavable tags and microchip micellular electrokinetic chromatography. <i>Analyst, The</i> , 2006 , 131, 1091-3	5	11
34	Generation of hydrophilic poly(dimethylsiloxane) for high-performance microchip electrophoresis. <i>Analytical Chemistry</i> , 2006 , 78, 7446-52	7.8	185
33	Screening for physical stability of a Pseudomonas amylase using self-interaction chromatography. <i>Analytical Biochemistry</i> , 2006 , 357, 35-42	3.1	19
32	Coupling Electrochemical Detection with Microchip Capillary Electrophoresis 2006, 265-297		1
31	Determination of levoglucosan from smoke samples using microchip capillary electrophoresis with pulsed amperometric detection. <i>Environmental Science & Environmental Science </i>	10.3	61
30	Analysis of natural flavonoids by microchip-micellar electrokinetic chromatography with pulsed amperometric detection. <i>Analyst, The</i> , 2005 , 130, 694-700	5	45
29	Second virial coefficient studies of cosolvent-induced protein self-interaction. <i>Biophysical Journal</i> , 2005 , 89, 4211-8	2.9	59
28	Comparison of Pulsed Electrochemical Detection Modes Coupled with Microchip Capillary Electrophoresis. <i>Electroanalysis</i> , 2005 , 17, 223-230	3	23
27	Coupling Capillary Electrophoresis and Pulsed Electrochemical Detection. <i>Electroanalysis</i> , 2005 , 17, 112	5 ₃ 1131	28
26	Comparison of surfactants for dynamic surface modification of poly(dimethylsiloxane) microchips. <i>Electrophoresis</i> , 2005 , 26, 703-9	3.6	83
25	Simplified current decoupler for microchip capillary electrophoresis with electrochemical and pulsed amperometric detection. <i>Electrophoresis</i> , 2005 , 26, 4641-7	3.6	48
24	Colloidal behavior of proteins: effects of the second virial coefficient on solubility, crystallization and aggregation of proteins in aqueous solution. <i>Current Pharmaceutical Biotechnology</i> , 2005 , 6, 427-36	2.6	75
23	Enhanced determination of glucose by microchip electrophoresis with pulsed amperometric detection. <i>Analytica Chimica Acta</i> , 2004 , 508, 1-9	6.6	51
22	Direct detection of renal function markers using microchip CE with pulsed electrochemical detection. <i>Analyst, The</i> , 2004 , 129, 579-84	5	43
21	Simple and sensitive electrode design for microchip electrophoresis/electrochemistry. <i>Analytical Chemistry</i> , 2004 , 76, 1513-7	7.8	77

20	Direct determination of carbohydrates, amino acids, and antibiotics by microchip electrophoresis with pulsed amperometric detection. <i>Analytical Chemistry</i> , 2003 , 75, 4778-83	7.8	122
19	Versatile 3-channel high-voltage power supply for microchip capillary electrophoresis. <i>Lab on A Chip</i> , 2003 , 3, 324-8	7.2	53
18	Screening of protein-ligand interactions by affinity chromatography. <i>Biotechnology Progress</i> , 2003 , 19, 575-9	2.8	10
17	Measuring protein interactions by microchip self-interaction chromatography. <i>Biotechnology Progress</i> , 2003 , 19, 1006-10	2.8	30
16	Experimental studies of electroosmotic flow dynamics in microfabricated devices during current monitoring experiments. <i>Analytical Chemistry</i> , 2003 , 75, 361-70	7.8	65
15	Recent progress in the development of muTAS for clinical analysis. <i>Analyst, The</i> , 2003 , 128, 1002-8	5	36
14	The analysis of uric acid in urine using microchip capillary electrophoresis with electrochemical detection. <i>Electrophoresis</i> , 2002 , 23, 767-73	3.6	75
13	Pulsed amperometric detection of carbohydrates on an electrophoretic microchip. <i>Analyst, The</i> , 2002 , 127, 1021-3	5	51
12	High-throughput multi-analyte screening for renal disease using capillary electrophoresis. <i>Journal of Pharmaceutical and Biomedical Analysis</i> , 2001 , 25, 795-801	3.5	37
11	Conductivity detection for monitoring mixing reactions in microfluidic devices. <i>Analyst, The</i> , 2001 , 126, 1248-51	5	30
10	Self-Contained Microelectrochemical Detectors for Analysis in Small Volumes of Static and Flowing Fluids 2001 , 321-322		1
9	Dynamic coating using polyelectrolyte multilayers for chemical control of electroosmotic flow in capillary electrophoresis microchips. <i>Analytical Chemistry</i> , 2000 , 72, 5939-44	7.8	263
8	Dual-electrode electrochemical detection for poly(dimethylsiloxane)-fabricated capillary electrophoresis microchips. <i>Analytical Chemistry</i> , 2000 , 72, 3196-202	7.8	280
7	Microcavities Containing Individually Addressable Recessed Microdisk and Tubular Nanoband Electrodes. <i>Journal of the Electrochemical Society</i> , 1999 , 146, 3367-3373	3.9	38
6	Ceramic microchips for capillary electrophoresis lectrochemistry. <i>Analytical Communications</i> , 1999 , 36, 305-307		43
5	Microfabricated recessed microdisk electrodes: characterization in static and convective solutions. <i>Analytical Chemistry</i> , 1999 , 71, 550-6	7.8	52
4	Formation and Characterization of Supported Hexadecanethiol/Dimyristoyl Phosphatidylcholine Hybrid Bilayers Containing Gramicidin D. <i>Langmuir</i> , 1998 , 14, 5850-5857	4	9
3	Point-of-Need Disposable ELISA System for COVID-19 Serology Testing		2

2 Point-of-Need Disposable ELISA System for COVID-19 Serology Testing

3