Melanie MacGregor

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6544930/publications.pdf

Version: 2024-02-01

52 papers 1,396 citations

331259 21 h-index 36 g-index

56 all docs

56
docs citations

56 times ranked 1763 citing authors

#	Article	IF	CITATIONS
1	Prostate cancer detection: a systematic review of urinary biosensors. Prostate Cancer and Prostatic Diseases, 2022, 25, 39-46.	2.0	14
2	Effect of Electric Fields on Silicon-Based Monolayers. Langmuir, 2022, 38, 2986-2992.	1.6	7
3	Nanoparticles Surface Chemistry Influence on Protein Corona Composition and Inflammatory Responses. Nanomaterials, 2022, 12, 682.	1.9	25
4	Effects of Supplemental Drugs on Hexaminolevulinate (HAL)-Induced PpIX Fluorescence in Bladder Cancer Cell Suspensions. International Journal of Molecular Sciences, 2022, 23, 7631.	1.8	2
5	Cancer cell detection device for the diagnosis of bladder cancer from urine. Biosensors and Bioelectronics, 2021, 171, 112699.	5 . 3	20
6	Improving hexaminolevulinate enabled cancer cell detection in liquid biopsy immunosensors. Scientific Reports, 2021, 11, 7283.	1.6	4
7	Plasma Deposited Polyoxazoline Films Integration Into Spiral Microfluidics for the Targeted Capture of Size Selected Cells. Frontiers in Chemistry, 2021, 9, 690781.	1.8	2
8	Plasma Deposited Polyoxazoline Thin Films for the Biofunctionalization of Electrochemical Sensors. Advanced Materials Technologies, 2021, 6, 2001292.	3.0	6
9	Fluid Flow Dependency in Immunoselective Cell Capture via Liquid Biopsy. Langmuir, 2021, 37, 12388-12396.	1.6	1
10	Selective Microfluidic Capture and Detection of Prostate Cancer Cells from Urine without Digital Rectal Examination. Cancers, 2021, 13, 5544.	1.7	7
11	Functional nanothin films plasma-deposited from 2-isopropenyl-2-oxazoline for biosensor applications. Biointerphases, 2020, 15, 051005.	0.6	11
12	Plasma enabled devices for the selective capture and photodynamic identification of prostate cancer cells. Biointerphases, 2020, 15, 031002.	0.6	10
13	Shedding Light on Bladder Cancer Diagnosis in Urine. Diagnostics, 2020, 10, 383.	1.3	15
14	Probing Hexaminolevulinate Mediated PpIX Fluorescence in Cancer Cell Suspensions in the Presence of Chemical Adjuvants. International Journal of Molecular Sciences, 2020, 21, 2963.	1.8	8
15	In order for the light to shine so brightly, the darkness must be presentâ€"why do cancers fluoresce with 5-aminolaevulinic acid?. British Journal of Cancer, 2019, 121, 631-639.	2.9	47
16	Biosensor device for the photo-specific detection of immuno-captured bladder cancer cells using hexaminolevulinate: An ex-vivo study. Photodiagnosis and Photodynamic Therapy, 2019, 28, 238-247.	1.3	13
17	Bladder Cancer Cell Capture: Elucidating the Effect of Sample Storage Conditions on Capturing Bladder Cancer Cells via Surface Immobilized EpCAM Antibody. ACS Applied Bio Materials, 2019, 2, 3730-3736.	2.3	6
18	Deposition of 2â€oxazolineâ€based plasma polymer coatings using atmospheric pressure helium plasma jet. Plasma Processes and Polymers, 2019, 16, 1900104.	1.6	12

#	Article	IF	CITATIONS
19	Biomaterial Surface Hydrophobicity-Mediated Serum Protein Adsorption and Immune Responses. ACS Applied Materials & Interfaces, 2019, 11, 27615-27623.	4.0	122
20	Nanotopographyâ€Induced Unfolding of Fibrinogen Modulates Leukocyte Binding and Activation. Advanced Functional Materials, 2019, 29, 1807453.	7.8	22
21	Plasma Polymer Coatings To Direct the Differentiation of Mouse Kidney-Derived Stem Cells into Podocyte and Proximal Tubule-like Cells. ACS Biomaterials Science and Engineering, 2019, 5, 2834-2845.	2.6	4
22	Nanotopography: Nanotopographyâ€Induced Unfolding of Fibrinogen Modulates Leukocyte Binding and Activation (Adv. Funct. Mater. 14/2019). Advanced Functional Materials, 2019, 29, 1970088.	7.8	2
23	Preserving the reactivity of coatings plasma deposited from oxazoline precursors â^ An in depth study. Plasma Processes and Polymers, 2019, 16, 1800130.	1.6	19
24	Perspective on Plasma Polymers for Applied Biomaterials Nanoengineering and the Recent Rise of Oxazolines. Materials, 2019, 12, 191.	1.3	52
25	Self-sterilizing antibacterial silver-loaded microneedles. Chemical Communications, 2019, 55, 171-174.	2.2	66
26	Creating Nano-engineered Biomaterials with Well-Defined Surface Descriptors. ACS Applied Nano Materials, 2018, 1, 2796-2807.	2.4	28
27	Binding of Nanoparticles to Aminated Plasma Polymer Surfaces is Controlled by Primary Amine Density and Solution pH. Journal of Physical Chemistry C, 2018, 122, 14986-14995.	1.5	9
28	Nanoengineered plasma polymer films for biomedical applications. Advanced Materials Letters, 2018, 9, 42-52.	0.3	4
29	Surface nanotopography guides kidney-derived stem cell differentiation into podocytes. Acta Biomaterialia, 2017, 56, 171-180.	4.1	27
30	A platform for selective immuno-capture of cancer cells from urine. Biosensors and Bioelectronics, 2017, 96, 373-380.	5.3	48
31	Secrets of Plasma-Deposited Polyoxazoline Functionality Lie in the Plasma Phase. Chemistry of Materials, 2017, 29, 8047-8051.	3.2	25
32	Questions and Answers on the Wettability of Nanoâ€Engineered Surfaces. Advanced Materials Interfaces, 2017, 4, 1700381.	1.9	69
33	Protein Interactions with Nanoengineered Polyoxazoline Surfaces Generated via Plasma Deposition. Langmuir, 2017, 33, 7322-7331.	1.6	30
34	The Role of Controlled Surface Topography and Chemistry on Mouse Embryonic Stem Cell Attachment, Growth and Self-Renewal. Materials, 2017, 10, 1081.	1.3	21
35	Nanoengineered Interfaces, Coatings, and Structures by Plasma Techniques. Nanomaterials, 2017, 7, 449.	1.9	1
36	Advanced Biomedical Devices Facilitated by Plasma Deposited Polyoxazoline Coatings. Biostatistics and Biometrics Open Access Journal, 2017, 2, .	0.1	0

3

#	Article	IF	CITATIONS
37	A Comparative Assessment of Nanoparticulate and Metallic Silver Coated Dressings. Recent Patents on Materials Science, 2016, 9, 50-57.	0.5	2
38	Plasma Nanoengineering and Nanofabrication. Nanomaterials, 2016, 6, 122.	1.9	1
39	â€~Chocolate' silver nanoparticles: Synthesis, antibacterial activity and cytotoxicity. Journal of Colloid and Interface Science, 2016, 482, 151-158.	5.0	78
40	Bactericidal effects of plasma-modified surface chemistry of silicon nanograss. Journal Physics D: Applied Physics, 2016, 49, 304001.	1.3	21
41	Antibiofouling Properties of Plasma-Deposited Oxazoline-Based Thin Films. ACS Applied Materials & Samp; Interfaces, 2016, 8, 6354-6362.	4.0	67
42	Tuning and predicting the wetting of nanoengineered material surface. Nanoscale, 2016, 8, 4635-4642.	2.8	54
43	Plasma deposition of organic polymer films for solar cell applications. Organic Electronics, 2016, 32, 78-82.	1.4	13
44	Plasma polymerised polyoxazoline thin films for biomedical applications. Chemical Communications, 2015, 51, 4279-4282.	2.2	81
45	Properties and reactivity of polyoxazoline plasma polymer films. Journal of Materials Chemistry B, 2015, 3, 6327-6337.	2.9	65
46	Magnetic alignment of nontronite dispersions. Applied Clay Science, 2015, 116-117, 167-174.	2.6	1
47	Smart polymer-clay composite nanomaterials. , 2014, , .		0
48	The influence of topography on dynamic wetting. Advances in Colloid and Interface Science, 2014, 206, 275-293.	7.0	98
49	Contact Line Motion on Nanorough Surfaces: A Thermally Activated Process. Journal of the American Chemical Society, 2013, 135, 7159-7171.	6.6	48
50	Nanoroughness Impact on Liquid–Liquid Displacement. Journal of Physical Chemistry C, 2012, 116, 10934-10943.	1.5	19
51	Contact Line Friction in Liquid–Liquid Displacement on Hydrophobic Surfaces. Journal of Physical Chemistry C, 2011, 115, 24975-24986.	1.5	44
52	Dynamics of Liquidâ^'Liquid Displacement. Langmuir, 2009, 25, 8069-8074.	1.6	39