Silvio Barbarelli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6544838/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Predictive model estimating the performances of centrifugal pumps used as turbines. Energy, 2016, 107, 103-121.	8.8	79
2	Design procedure of an innovative turbine with rotors rotating in opposite directions for the exploitation of the tidal currents. Energy, 2014, 77, 254-264.	8.8	25
3	Analysis of the equilibrium conditions of a double rotor turbine prototype designed for the exploitation of the tidal currents. Energy Conversion and Management, 2014, 87, 1124-1133.	9.2	24
4	Innovative tidal turbine with central deflector for the exploitation of river and sea currents in on-shore installations. Applied Energy, 2012, 97, 944-955.	10.1	23
5	Lcoe evaluation for a tidal kinetic self balancing turbine: Case study and comparison. Applied Energy, 2017, 185, 1292-1302.	10.1	21
6	First techno-economic evaluation of array configuration of self-balancing tidal kinetic turbines. Renewable Energy, 2018, 129, 183-200.	8.9	15
7	Review of Methods Used for Selecting Pumps as Turbines (PATs) and Predicting Their Characteristic Curves. Energies, 2020, 13, 6341.	3.1	14
8	A One-Dimensional Numerical Model for Calculating the Efficiency of Pumps as Turbines for Implementation in Micro-Hydro Power Plants. , 2004, , 65.		12
9	Levelized Cost of Energy: A First Evaluation for a Self Balancing Kinetic Turbine. Energy Procedia, 2015, 75, 283-293.	1.8	12
10	Using a Statistical-Numerical Procedure for the Selection of Pumps running as Turbines to be applied in Water Pipelines: Study Cases. Journal of Sustainable Development of Energy, Water and Environment Systems, 2018, 6, 323-340.	1.9	12
11	Zero-dimensional Model and Pressure Data Analysis of a Variable-Displacement Lubricating Vane Pump. , 2009, , .		11
12	Tides and Tidal Currents—Guidelines for Site and Energy Resource Assessment. Energies, 2021, 14, 6123.	3.1	11
13	NOx emissions for oxy-mild combustion of pulverized coal in high temperature pre-heated oxygen Energy Procedia, 2018, 148, 567-574.	1.8	7
14	Design and analysis of a new wave energy converter based on a point absorber and a hydraulic system harvesting energy from waves near the shore in calm seas. International Journal of Energy Research, 2021, 45, 661-690.	4.5	5
15	Computational Fluid Dynamic Analysis of the External Rotor Supporting the Design of a Tidal Kinetic Turbine Prototype. Journal of Sustainable Development of Energy, Water and Environment Systems, 2017, 5, 332-344.	1.9	5
16	Development of a Predicting Model for Calculating the Geometry and the Characteristic Curves of Pumps Running as Turbines in Both Operating Modes. Energies, 2022, 15, 2669.	3.1	5
17	Performance Analysis of a Low-Power Tangential Flow Turbine With Rotary Channel. Journal of Energy Resources Technology, Transactions of the ASME, 2005, 127, 272-279.	2.3	4
18	Design and Numerical Analysis of a Double Rotor Turbine Prototype Operating in Tidal Currents. Energy Procedia, 2016, 101, 1199-1206.	1.8	4

SILVIO BARBARELLI

#	Article	IF	CITATIONS
19	Theoretical and experimental analysis of a new compressible flow small power turbine prototype. International Journal of Heat and Technology, 2017, 35, S391-S398.	0.6	4
20	Study of a hydraulic system converting energy from sea waves near the coast. MATEC Web of Conferences, 2018, 240, 01004.	0.2	3
21	CFD Investigation of the Open Center on the Performance of a Tidal Current Turbine. Energy Procedia, 2019, 159, 28-33.	1.8	3
22	Flow-field and wake analysis of novel double-rotor open-center tidal current turbine by CFD simulations. Ocean Engineering, 2021, 222, 108597.	4.3	2
23	Possibility of employing a small power tangential flow turbine prototype in a micro solar concentration plant. International Journal of Heat and Technology, 2017, 35, 785-792.	0.6	2
24	Transients Analysis of a Tidal Currents Self-balancing Kinetic Turbine with on Shore Basement. Energy Procedia, 2014, 61, 962-969.	1.8	1
25	Innovative on-Shore System recovering Energy from Tidal Currents. Energy Procedia, 2017, 142, 29-36.	1.8	1
26	Hydraulic on-shore system recovering energy from sea waves. Energy Procedia, 2019, 159, 72-77.	1.8	1
27	A Model Investigation on the Pressure Transducer Dynamics for Measurements in Lubricating Vane Pumps: Influence of Dissolved Air and of Transducer/Tubing Geometry. , 2010, , .		0
28	Open center tidal turbine: How a new mooring system concept affects the performances. International Journal of Energy Research, 2021, 45, 6727-6744.	4.5	0