
Xiuqiang Xie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6544767/publications.pdf Version: 2024-02-01

XILIOIANC XIE

#	Article	IF	CITATIONS
1	Porous hard carbon spheres derived from biomass for high-performance sodium/potassium-ion batteries. Nanotechnology, 2022, 33, 055401.	2.6	23
2	Surfactant-free self-assembled MXene/carbon nanotubes hybrids for high-rate sodium- and potassium-ion storage. Journal of Alloys and Compounds, 2022, 901, 163426.	5.5	16
3	Self-assembled transition metal chalcogenides@CoAl-LDH 2D/2D heterostructures with enhanced photoactivity for hydrogen evolution. Inorganic Chemistry Frontiers, 2022, 9, 994-1005.	6.0	13
4	Room-Temperature Assembled MXene-Based Aerogels for High Mass-Loading Sodium-Ion Storage. Nano-Micro Letters, 2022, 14, 37.	27.0	49
5	High-efficiency cathode potassium compensation and interfacial stability improvement enabled by dipotassium squarate for potassium-ion batteries. Energy and Environmental Science, 2022, 15, 3015-3023.	30.8	25
6	Stabilizing BiOCl/Ti ₃ C ₂ T _{<i>x</i>/i>} hybrids for potassium-ion batteries <i>via</i> solid electrolyte interphase reconstruction. Inorganic Chemistry Frontiers, 2022, 9, 3165-3175.	6.0	5
7	Design of efficient electrocatalysts for hydrogen evolution reaction based on 2D MXenes. Journal of Energy Chemistry, 2021, 55, 244-255.	12.9	104
8	Facial synthesis of two-dimensional In ₂ S ₃ /Ti ₃ C ₂ T _{<i>x</i>} heterostructures with boosted photoactivity for the hydrogenation of nitroaromatic compounds. Materials Chemistry Frontiers, 2021, 5, 6883-6890.	5.9	9
9	Electrostatically confined Bi/Ti ₃ C ₂ T _{<i>x</i>} on a sponge as an easily recyclable and durable catalyst for the reductive transformation of nitroarenes. Journal of Materials Chemistry A, 2021, 9, 19847-19853.	10.3	12
10	Selectivity control of organic chemical synthesis over plasmonic metal-based photocatalysts. Catalysis Science and Technology, 2021, 11, 425-443.	4.1	5
11	2D Titanium Carbide (MXene) Based Films: Expanding the Frontier of Functional Film Materials. Advanced Functional Materials, 2021, 31, 2105043.	14.9	50
12	Achieving Highâ€Performance 3D K ⁺ â€Preâ€intercalated Ti ₃ C ₂ T _{<i>x</i>} MXene for Potassiumâ€ion Hybrid Capacitors via Regulating Electrolyte Solvation Structure. Angewandte Chemie, 2021, 133, 26450-26457.	2.0	3
13	Achieving Highâ€Performance 3D K ⁺ â€Preâ€intercalated Ti ₃ C ₂ T _{<i>x</i>} MXene for Potassiumâ€ion Hybrid Capacitors via Regulating Electrolyte Solvation Structure. Angewandte Chemie - International Edition, 2021, 60, 26246-26253.	13.8	50
14	Schottky Junctions with Bi Cocatalyst for Taming Aqueous Phase N ₂ Reduction toward Enhanced Solar Ammonia Production. Advanced Science, 2021, 8, 2003626.	11.2	56
15	Surface Chemistry and Mesopore Dual Regulation by Sulfurâ€Promised High Volumetric Capacity of Ti ₃ C ₂ T <i>_x</i> Films for Sodiumâ€Ion Storage. Small, 2021, 17, e2103626.	10.0	19
16	Robust and easily retrievable Pd/Ti3C2T âŠ,graphene hydrogels for efficient catalytic hydrogenation of nitroaromatic compounds. Chinese Chemical Letters, 2020, 31, 1014-1017.	9.0	35
17	Support interactions dictated active edge sites over MoS ₂ –carbon composites for hydrogen evolution. Nanoscale, 2020, 12, 1109-1117.	5.6	23
18	Rising from the horizon: three-dimensional functional architectures assembled with MXene nanosheets. Journal of Materials Chemistry A, 2020, 8, 18538-18559.	10.3	86

XIUQIANG XIE

#	Article	IF	CITATIONS
19	Positioning MXenes in the Photocatalysis Landscape: Competitiveness, Challenges, and Future Perspectives. Advanced Functional Materials, 2020, 30, 2002528.	14.9	162
20	Artificial nitrogen fixation over bismuth-based photocatalysts: fundamentals and future perspectives. Journal of Materials Chemistry A, 2020, 8, 4978-4995.	10.3	97
21	A retrospective on MXene-based composites for solar fuel production. Pure and Applied Chemistry, 2020, 92, 1953-1969.	1.9	14
22	Facile synthesis of <i>Camellia oleifera</i> shell-derived hard carbon as an anode material for lithium-ion batteries. RSC Advances, 2019, 9, 20424-20431.	3.6	31
23	Nitrogen-doped Carbon with Modulated Surface Chemistry and Porous Structure by a Stepwise Biomass Activation Process towards Enhanced Electrochemical Lithium-Ion Storage. Scientific Reports, 2019, 9, 15032.	3.3	24
24	Microstructure and surface control of MXene films for water purification. Nature Sustainability, 2019, 2, 856-862.	23.7	273
25	Ti ₃ C ₂ T _{<i>x</i>/sub>-Based Three-Dimensional Hydrogel by a Graphene Oxide-Assisted Self-Convergence Process for Enhanced Photoredox Catalysis. ACS Nano, 2019, 13, 295-304.}	14.6	247
26	Porous Ti ₃ C ₂ T _{<i>x</i>} MXene for Ultrahigh-Rate Sodium-Ion Storage with Long Cycle Life. ACS Applied Nano Materials, 2018, 1, 505-511.	5.0	132
27	MoS ₂ â€onâ€MXene Heterostructures as Highly Reversible Anode Materials for Lithiumâ€lon Batteries. Angewandte Chemie, 2018, 130, 1864-1868.	2.0	67
28	MoS ₂ â€onâ€MXene Heterostructures as Highly Reversible Anode Materials for Lithiumâ€lon Batteries. Angewandte Chemie - International Edition, 2018, 57, 1846-1850.	13.8	520
29	An adaptive geometry regulation strategy for 3D graphene materials: towards advanced hybrid photocatalysts. Chemical Science, 2018, 9, 8876-8882.	7.4	29
30	Ti3C2Tx MXene as a Janus cocatalyst for concurrent promoted photoactivity and inhibited photocorrosion. Applied Catalysis B: Environmental, 2018, 237, 43-49.	20.2	174
31	Stressâ€Transferâ€Induced Inâ€Situ Formation of Ultrathin Nickel Phosphide Nanosheets for Efficient Hydrogen Evolution. Angewandte Chemie, 2018, 130, 13266-13269.	2.0	26
32	Stressâ€Transferâ€Induced Inâ€Situ Formation of Ultrathin Nickel Phosphide Nanosheets for Efficient Hydrogen Evolution. Angewandte Chemie - International Edition, 2018, 57, 13082-13085.	13.8	97
33	Charge transfer induced polymerization of EDOT confined between 2D titanium carbide layers. Journal of Materials Chemistry A, 2017, 5, 5260-5265.	10.3	142
34	Sb ₂ O ₃ /MXene(Ti ₃ C ₂ T _x) hybrid anode materials with enhanced performance for sodium-ion batteries. Journal of Materials Chemistry A, 2017, 5, 12445-12452.	10.3	245
35	Hierarchical Porous Carbon Spheres for Highâ€Performance Na–O ₂ Batteries. Advanced Materials, 2017, 29, 1606816.	21.0	81
36	Two-dimensional layered compound based anode materials for lithium-ion batteries and sodium-ion batteries. Journal of Colloid and Interface Science, 2017, 499, 17-32.	9.4	78

XIUQIANG XIE

#	Article	IF	CITATIONS
37	3D Interconnected Carbon Fiber Networkâ€Enabled Ultralong Life Na ₃ V ₂ (PO ₄) ₃ @Carbon Paper Cathode for Sodiumâ€lon Batteries. Small, 2017, 13, 1603318.	10.0	72
38	Hollow MXene Spheres and 3D Macroporous MXene Frameworks for Naâ€lon Storage. Advanced Materials, 2017, 29, 1702410.	21.0	757
39	Confined Sulfur in 3 D MXene/Reduced Graphene Oxide Hybrid Nanosheets for Lithium–Sulfur Battery. Chemistry - A European Journal, 2017, 23, 12613-12619.	3.3	167
40	MoS ₂ Nanosheets Vertically Aligned on Carbon Paper: A Freestanding Electrode for Highly Reversible Sodiumâ€lon Batteries. Advanced Energy Materials, 2016, 6, 1502161.	19.5	444
41	Porous carbon nanocages encapsulated with tin nanoparticles for high performance sodium-ion batteries. Energy Storage Materials, 2016, 5, 180-190.	18.0	61
42	Immobilizing Polysulfides with MXene-Functionalized Separators for Stable Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2016, 8, 29427-29433.	8.0	234
43	Porous heterostructured MXene/carbon nanotube composite paper with high volumetric capacity for sodium-based energy storage devices. Nano Energy, 2016, 26, 513-523.	16.0	710
44	Rose flower-like NiCo2O4 with hierarchically porous structures for highly reversible lithium storage. Journal of Alloys and Compounds, 2016, 684, 691-698.	5.5	45
45	Hydrothermal Synthesis of Multiwalled Carbon Nanotube–Zinc Manganate Nanoparticles as Anode Materials for Lithium Ion Batteries. ChemPlusChem, 2016, 81, 399-405.	2.8	9
46	A Bifunctional Organic Redox Catalyst for Rechargeable Lithium–Oxygen Batteries with Enhanced Performances. Advanced Science, 2016, 3, 1500285.	11.2	37
47	A free-standing LiFePO ₄ –carbon paper hybrid cathode for flexible lithium-ion batteries. Green Chemistry, 2016, 18, 2691-2698.	9.0	53
48	MoS ₂ Nanosheets Supported on 3D Graphene Aerogel as a Highly Efficient Catalyst for Hydrogen Evolution. Chemistry - A European Journal, 2015, 21, 15908-15913.	3.3	99
49	Frontispiece: MoS ₂ Nanosheets Supported on 3D Graphene Aerogel as a Highly Efficient Catalyst for Hydrogen Evolution. Chemistry - A European Journal, 2015, 21, .	3.3	0
50	3D Networked Tin Oxide/Graphene Aerogel with a Hierarchically Porous Architecture for Highâ€Rate Performance Sodiumâ€lon Batteries. ChemSusChem, 2015, 8, 2948-2955.	6.8	70
51	Enhancement of stability for lithium oxygen batteries by employing electrolytes gelled by poly(vinylidene fluoride-co-hexafluoropropylene) and tetraethylene glycol dimethyl ether. Electrochimica Acta, 2015, 183, 56-62.	5.2	58
52	Microwave-assisted Synthesis of Mesoporous Co ₃ O ₄ Nanoflakes for Applications in Lithium Ion Batteries and Oxygen Evolution Reactions. ACS Applied Materials & Interfaces, 2015, 7, 3306-3313.	8.0	169
53	A comparative investigation on the effects of nitrogen-doping into graphene on enhancing the electrochemical performance of SnO ₂ /graphene for sodium-ion batteries. Nanoscale, 2015, 7, 3164-3172.	5.6	130
54	MoS ₂ /Graphene Composite Anodes with Enhanced Performance for Sodiumâ€ion Batteries: The Role of the Twoâ€Đimensional Heterointerface. Advanced Functional Materials, 2015, 25, 1393-1403.	14.9	657

XIUQIANG XIE

#	Article	IF	CITATIONS
55	Sn@CNT nanopillars grown perpendicularly on carbon paper: A novel free-standing anode for sodium ion batteries. Nano Energy, 2015, 13, 208-217.	16.0	185
56	Multi-chambered micro/mesoporous carbon nanocubes as new polysulfides reserviors for lithium–sulfur batteries with long cycle life. Nano Energy, 2015, 16, 268-280.	16.0	132
57	Advances in graphene-based semiconductor photocatalysts for solar energy conversion: fundamentals and materials engineering. Nanoscale, 2015, 7, 13278-13292.	5.6	120
58	A Microwave Synthesis of Mesoporous NiCo ₂ O ₄ Nanosheets as Electrode Materials for Lithiumâ€lon Batteries and Supercapacitors. ChemPhysChem, 2015, 16, 169-175.	2.1	122
59	SnS ₂ Nanoplatelet@Graphene Nanocomposites as Highâ€Capacity Anode Materials for Sodiumâ€Ion Batteries. Chemistry - an Asian Journal, 2014, 9, 1611-1617.	3.3	166
60	Synthesis of Singleâ€Crystalline Spinel LiMn ₂ O ₄ Nanorods for Lithiumâ€lon Batteries with High Rate Capability and Long Cycle Life. Chemistry - A European Journal, 2014, 20, 17125-17131.	3.3	32
61	Highly Porous NiCo ₂ O ₄ Nanoflakes and Nanobelts as Anode Materials for Lithium-Ion Batteries with Excellent Rate Capability. ACS Applied Materials & Interfaces, 2014, 6, 14827-14835.	8.0	187
62	Porous poly(vinylidene fluoride-co-hexafluoropropylene) polymer membrane with sandwich-like architecture for highly safe lithium ion batteries. Journal of Membrane Science, 2014, 472, 133-140.	8.2	75
63	Hierarchical Mesoporous SnO Microspheres as High Capacity Anode Materials for Sodiumâ€ l on Batteries. Chemistry - A European Journal, 2014, 20, 3192-3197.	3.3	59
64	Mesoporous hexagonal Co3O4 for high performance lithium ion batteries. Scientific Reports, 2014, 4, 6519.	3.3	84
65	CuO single crystal with exposed {001} facets - A highly efficient material for gas sensing and Li-ion battery applications. Scientific Reports, 2014, 4, 5753.	3.3	123
66	Nitrogen-doped graphene stabilized gold nanoparticles for aerobic selective oxidation of benzylic alcohols. RSC Advances, 2012, 2, 12438.	3.6	84
67	Nitrogen-Doped Graphene Nanosheets as Metal-Free Catalysts for Aerobic Selective Oxidation of Benzylic Alcohols. ACS Catalysis, 2012, 2, 622-631.	11.2	384
68	Probing the Electronic Structure and Photoactivation Process of Nitrogenâ€Doped TiO ₂ Using DRS, PL, and EPR. ChemPhysChem, 2012, 13, 1542-1550.	2.1	29
69	Controlling the synergistic effect of oxygen vacancies and N dopants to enhance photocatalytic activity of N-doped TiO2 by H2 reduction. Applied Catalysis A: General, 2012, 425-426, 117-124.	4.3	76
70	Sn2+ dopant induced visible-light activity of SnO2 nanoparticles for H2 production. Catalysis Communications, 2011, 16, 215-219.	3.3	64
71	Photocatalytic reforming of C3-polyols for H2 production. Applied Catalysis B: Environmental, 2011, 106, 689-696.	20.2	45