
Rosanna Stancanelli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6544732/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Chitosan-Hyaluronan Nanoparticles for Vinblastine Sulfate Delivery: Characterization and Internalization Studies on K-562 Cells. Pharmaceutics, 2022, 14, 942.	2.0	11
2	Rutin-Loaded Solid Lipid Nanoparticles: Characterization and In Vitro Evaluation. Molecules, 2021, 26, 1039.	1.7	21
3	Temperature-Dependent Dynamical Evolution in Coum/SBE-β-CD Inclusion Complexes Revealed by Two-Dimensional FTIR Correlation Spectroscopy (2D-COS). Molecules, 2021, 26, 3749.	1.7	8
4	Physicochemical Characterization and Antioxidant Activity Evaluation of Idebenone/Hydroxypropyl-β-Cyclodextrin Inclusion Complex â€. Biomolecules, 2019, 9, 531.	1.8	51
5	Analysis of the thermal fluctuations in inclusion complexes of genistein with β-cyclodextrin derivatives. Chemical Physics, 2019, 516, 125-131.	0.9	5
6	Gemcitabine anticancer activity enhancement by water soluble celecoxib/sulfobutyl ether-β-cyclodextrin inclusion complex. Carbohydrate Polymers, 2019, 206, 792-800.	5.1	37
7	Physicochemical properties of inclusion complexes of highly soluble β-cyclodextrins with highly hydrophobic testosterone propionate. International Journal of Pharmaceutics, 2017, 534, 316-324.	2.6	11
8	"Host-guest―interactions in Captisol®/Coumestrol inclusion complex: UV–vis, FTIR-ATR and Raman studies. Journal of Molecular Structure, 2017, 1146, 512-521.	1.8	19
9	Solute–Solvent Interactions in Aqueous Solutions of Sulfobutyl Ether-β-cyclodextrin As Probed by UV-Raman and FTIR-ATR Analysis. Journal of Physical Chemistry B, 2016, 120, 3746-3753.	1.2	6
10	Nanotherapeutics for anti-inflammatory delivery. Journal of Drug Delivery Science and Technology, 2016, 32, 174-191.	1.4	21
11	Isoflavone aglycons-sulfobutyl ether-β-cyclodextrin inclusion complexes: in solution and solid state studies. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2015, 83, 27-36.	0.9	14
12	A characterization study of resveratrol/sulfobutyl ether-β-cyclodextrin inclusion complex and in vitro anticancer activity. Colloids and Surfaces B: Biointerfaces, 2014, 115, 22-28.	2.5	107
13	Celecoxib-loaded PLGA/cyclodextrin microspheres: Characterization and evaluation of anti-inflammatory activity on human chondrocyte cultures. Colloids and Surfaces B: Biointerfaces, 2013, 111, 289-296.	2.5	28
14	Structural and spectroscopic features of lutein/butanoyl-β-cyclodextrin nanoassemblies. Journal of Pharmaceutical and Biomedical Analysis, 2012, 71, 214-218.	1.4	20
15	Synthesis and characterization of a colloidal novel folic acid–β-cyclodextrin conjugate for targeted drug delivery. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2011, 69, 321-325.	1.6	12
16	Gemcitabine-loaded chitosan microspheres. Characterization and biological in vitro evaluation. Biomedical Microdevices, 2011, 13, 799-807.	1.4	27
17	A Phase Solubility Study on the Chiral Discrimination of Ibuprofen by β-Cyclodextrin Complexes. Food Biophysics, 2011, 6, 267-273.	1.4	12
18	The effect of hydrogen bond on the vibrational dynamics of genistein free and complexed with β•yclodextrins. Journal of Raman Spectroscopy, 2010, 41, 764-770.	1.2	24

#	Article	IF	CITATIONS
19	Amphiphilic Cyclodextrins as Nanocarriers of Genistein: A Spectroscopic Investigation Pointing Out the Structural Properties of the Host/Drug Complex System. Journal of Pharmaceutical Sciences, 2010, 99, 3141-3149.	1.6	22
20	Temperature Effect on the Vibrational Dynamics of Cyclodextrin Inclusion Complexes: Investigation by FTIR-ATR Spectroscopy and Numerical Simulation. Journal of Physical Chemistry A, 2010, 114, 6811-6817.	1.1	34
21	Influence of the "Hostâ^'Guest―Interactions on the Mobility of Genistein/β-Cyclodextrin Inclusion Complex. Journal of Physical Chemistry B, 2009, 113, 11032-11038.	1.2	10
22	Inclusion of 5-[4-(1-Dodecanoylpyridinium)]-10,15,20-triphenylporphine in Supramolecular Aggregates of Cationic Amphiphilic Cyclodextrins: Physicochemical Characterization of the Complexes and Strengthening of the Antimicrobial Photosensitizing Activity. Biomacromolecules, 2009, 10, 2592-2600.	2.6	62
23	Improvement of water solubility of non-competitive AMPA receptor antagonists by complexation with β-cyclodextrin. Bioorganic and Medicinal Chemistry, 2008, 16, 8706-8712.	1.4	14
24	Synthesis, resolution, stereochemistry, and molecular modeling of (R)- and (S)-2-acetyl-1-(4â€2-chlorophenyl)-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline AMPAR antagonists. Bioorganic and Medicinal Chemistry, 2007, 15, 5417-5423.	1.4	27
25	Improvement in solubility and dissolution rate of flavonoids by complexation with β-cyclodextrin. Journal of Pharmaceutical and Biomedical Analysis, 2004, 35, 379-387.	1.4	220
26	Use of short-end injection capillary packed with a glycopeptide antibiotic stationary phase in electrochromatography and capillary liquid chromatography for the enantiomeric separation of hydroxy acids. Journal of Chromatography A, 2003, 990, 143-151.	1.8	27
27	LC-MS for the identification of oxygen heterocyclic compounds in citrus essential oils. Journal of Pharmaceutical and Biomedical Analysis, 2000, 24, 147-154.	1.4	135
28	Rapid Analysis of Essential and Branched-Chain Amino Acids in Nutraceutical Products by Micellar Electrokinetic Capillary Chromatography. Journal of Agricultural and Food Chemistry, 2000, 48, 3324-3329.	2.4	16
29	Water dynamics in amphiphiles and alcoholic solutions. Physica A: Statistical Mechanics and Its Applications, 1998, 257, 107-118.	1.2	4