
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6544655/publications.pdf Version: 2024-02-01

HEIKE RUNIES

#	Article	IF	CITATIONS
1	Investigations on the structure of solid lipid nanoparticles (SLN) and oil-loaded solid lipid nanoparticles by photon correlation spectroscopy, field-flow fractionation and transmission electron microscopy. Journal of Controlled Release, 2004, 95, 217-227.	4.8	390
2	Crystallization tendency and polymorphic transitions in triglyceride nanoparticles. International Journal of Pharmaceutics, 1996, 129, 159-173.	2.6	371
3	Characterization of lipid nanoparticles by differential scanning calorimetry, X-ray and neutron scatteringâ^†. Advanced Drug Delivery Reviews, 2007, 59, 379-402.	6.6	266
4	Cryogenic transmission electron microscopy (cryo-TEM) for studying the morphology of colloidal drug delivery systems. International Journal of Pharmaceutics, 2011, 417, 120-137.	2.6	254
5	Lipid nanoparticles for the delivery of poorly water-soluble drugs. Journal of Pharmacy and Pharmacology, 2010, 62, 1637-1645.	1.2	190
6	Visualizing the Structure of Triglyceride Nanoparticles in Different Crystal Modifications. Langmuir, 2007, 23, 4005-4011.	1.6	169
7	Influence of emulsifiers on the crystallization of solid lipid nanoparticles. Journal of Pharmaceutical Sciences, 2003, 92, 1509-1520.	1.6	163
8	Effect of Particle Size on Colloidal Solid Triglycerides. Langmuir, 2000, 16, 5234-5241.	1.6	156
9	Do nanoparticles prepared from lipids solid at room temperature always possess a solid lipid matrix?. International Journal of Pharmaceutics, 1995, 115, 129-131.	2.6	133
10	Saturated phospholipids promote crystallization but slow down polymorphic transitions in triglyceride nanoparticles. Journal of Controlled Release, 2005, 107, 229-243.	4.8	122
11	Novel strategies for the formulation and processing of poorly water-soluble drugs. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 126, 40-56.	2.0	110
12	Encapsulation of proteins in hydrogel carrier systems for controlled drug delivery: Influence of network structure and drug size on release rate. Journal of Biotechnology, 2013, 163, 243-249.	1.9	106
13	Structural properties of solid lipid based colloidal drug delivery systems. Current Opinion in Colloid and Interface Science, 2011, 16, 405-411.	3.4	86
14	Incorporation of the model drug ubidecarenone into solid lipid nanoparticles. Pharmaceutical Research, 2001, 18, 287-293.	1.7	85
15	Poly(vinyl alcohol) as Emulsifier Stabilizes Solid Triglyceride Drug Carrier Nanoparticles in the α-Modification. Molecular Pharmaceutics, 2009, 6, 105-120.	2.3	70
16	Observation of Size-Dependent Melting in Lipid Nanoparticles. Journal of Physical Chemistry B, 1999, 103, 10373-10377.	1.2	67
17	Flow Cytometry as a New Approach To Investigate Drug Transfer between Lipid Particles. Molecular Pharmaceutics, 2010, 7, 350-363.	2.3	63
18	Transformation of vesicular into cubic nanoparticles by autoclaving of aqueous monoolein/poloxamer dispersions. European Journal of Pharmaceutical Sciences, 2006, 27, 44-53.	1.9	60

#	Article	IF	CITATIONS
19	Alkynyl gold(I) phosphane complexes: Evaluation of structure–activity-relationships for the phosphane ligands, effects on key signaling proteins and preliminary in-vivo studies with a nanoformulated complex. Journal of Inorganic Biochemistry, 2016, 160, 140-148.	1.5	53
20	The physical state of lipid nanoparticles influences their effect on in vitro cell viability. European Journal of Pharmaceutics and Biopharmaceutics, 2011, 79, 150-161.	2.0	51
21	Preparation of Nanoemulsions and Solid Lipid Nanoparticles by Premix Membrane Emulsification. Journal of Pharmaceutical Sciences, 2012, 101, 2479-2489.	1.6	50
22	Relevant shaking stress conditions for antibody preformulation development. European Journal of Pharmaceutics and Biopharmaceutics, 2010, 74, 139-147.	2.0	47
23	Thermotropic liquid crystalline drugs. Journal of Pharmacy and Pharmacology, 2010, 57, 807-816.	1.2	43
24	Drug Release from Differently Structured Monoolein/Poloxamer Nanodispersions Studied with Differential Pulse Polarography and Ultrafiltration at Low Pressure. Journal of Pharmaceutical Sciences, 2007, 96, 1564-1575.	1.6	41
25	Evaluation of Shirasu Porous Glass (SPG) membrane emulsification for the preparation of colloidal lipid drug carrier dispersions. European Journal of Pharmaceutics and Biopharmaceutics, 2014, 87, 178-186.	2.0	41
26	Lipid nanoparticles: Drug localization is substance-specific and achievable load depends on the size and physical state of the particles. Journal of Controlled Release, 2014, 189, 54-64.	4.8	37
27	Hydroxyethyl starch-based polymers for the controlled release of biomacromolecules from hydrogel microspheres. European Journal of Pharmaceutics and Biopharmaceutics, 2012, 81, 573-581.	2.0	36
28	Challenges in Nanogrinding of Active Pharmaceutical Ingredients. Chemical Engineering and Technology, 2014, 37, 840-846.	0.9	36
29	Incorporation of lipid nanoparticles into calcium alginate beads and characterization of the encapsulated particles by differential scanning calorimetry. Food Hydrocolloids, 2013, 30, 567-575.	5.6	34
30	Evaluation of the drug loading capacity of different lipid nanoparticle dispersions by passive drug loading. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 117, 49-59.	2.0	33
31	Effects of surfactants on the crystallization and polymorphism of lipid nanoparticles. , 2002, , 7-10.		25
32	Optically monitored segmented flow for controlled ultra-fast mixing and nanoparticle precipitation. Microfluidics and Nanofluidics, 2017, 21, 1.	1.0	24
33	Antisolvent precipitation of lipid nanoparticles in microfluidic systems – A comparative study. International Journal of Pharmaceutics, 2020, 579, 119167.	2.6	24
34	Comparison of in vitro and in vivo protein release from hydrogel systems. Journal of Controlled Release, 2012, 162, 127-133.	4.8	23
35	Drug solubility in lipid nanocarriers: Influence of lipid matrix and available interfacial area. International Journal of Pharmaceutics, 2017, 529, 617-628.	2.6	23
36	Preparation of Nanoemulsions by Premix Membrane Emulsification: Which Parameters Have a Significant Influence on the Resulting Particle Size?. Journal of Pharmaceutical Sciences, 2017, 106, 2068-2076.	1.6	22

#	Article	IF	CITATIONS
37	Influence of membrane material on the production of colloidal emulsions by premix membrane emulsification. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 126, 140-148.	2.0	22
38	Stabilized Production of Lipid Nanoparticles of Tunable Size in Taylor Flow Glass Devices with High-Surface-Quality 3D Microchannels. Micromachines, 2019, 10, 220.	1.4	22
39	Instrumented small scale extruder to investigate the influence of process parameters during premix membrane emulsification. Chemical Engineering Journal, 2016, 284, 716-723.	6.6	21
40	Bone Morphogenetic Protein 2 (BMP-2) Aggregates Can be Solubilized by Albumin—Investigation of BMP-2 Aggregation by Light Scattering and Electrophoresis. Pharmaceutics, 2020, 12, 1143.	2.0	21
41	Formulation of Cannabidiol in Colloidal Lipid Carriers. Molecules, 2021, 26, 1469.	1.7	20
42	Parenteral formulation of an antileishmanial drug candidate – Tackling poor solubility, chemical instability, and polymorphism. European Journal of Pharmaceutics and Biopharmaceutics, 2013, 85, 511-520.	2.0	19
43	Stability of the Metastable α-Polymorph in Solid Triglyceride Drug-Carrier Nanoparticles. Langmuir, 2015, 31, 6663-6674.	1.6	17
44	Determining drug release rates of hydrophobic compounds from nanocarriers. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2016, 374, 20150128.	1.6	17
45	Influence of stabilizer systems on the properties and phase behavior of supercooled smectic nanoparticles. Journal of Colloid and Interface Science, 2010, 350, 229-239.	5.0	16
46	Comparison of different protein concentration techniques within preformulation development. International Journal of Pharmaceutics, 2011, 421, 120-129.	2.6	16
47	Influence of Formulation Parameters on Redispersibility of Naproxen Nanoparticles from Granules Produced in a Fluidized Bed Process. Pharmaceutics, 2020, 12, 363.	2.0	16
48	Development of a new approach to investigating the drug transfer from colloidal carrier systems applying lipid nanosuspension-containing alginate microbeads as acceptor. International Journal of Pharmaceutics, 2015, 489, 203-209.	2.6	15
49	Drug release studies from lipid nanoparticles in physiological media by a new DSC method. Journal of Controlled Release, 2017, 256, 92-100.	4.8	15
50	Goodbye fouling: a unique coaxial lamination mixer (CLM) enabled by two-photon polymerization for the stable production of monodisperse drug carrier nanoparticles. Lab on A Chip, 2021, 21, 2178-2193.	3.1	15
51	Preparation of lipid nanoemulsions by premix membrane emulsification with disposable materials. International Journal of Pharmaceutics, 2016, 511, 741-744.	2.6	14
52	Parameters influencing the course of passive drug loading into lipid nanoemulsions. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 126, 123-131.	2.0	14
53	Control over Particle Size Distribution by Autoclaving Poloxamer-Stabilized Trimyristin Nanodispersions. Molecular Pharmaceutics, 2016, 13, 3187-3195.	2.3	13
54	Varying the sustained release of BMPâ€2 from chitosan nanogelâ€functionalized polycaprolactone fiber mats by different polycaprolactone surface modifications. Journal of Biomedical Materials Research - Part A, 2021, 109, 600-614.	2.1	13

#	Article	IF	CITATIONS
55	Orodispersible Films: A Delivery Platform for Solid Lipid Nanoparticles?. Pharmaceutics, 2021, 13, 2162.	2.0	13
56	Supercooled smectic nanoparticles: Influence of the matrix composition and in vitro cytotoxicity. European Journal of Pharmaceutical Sciences, 2009, 38, 238-248.	1.9	11
57	Mobility of Green Fluorescent Protein in Hydrogelâ€Based Drugâ€Delivery Systems Studied by Anisotropy and Fluorescence Recovery After Photobleaching. Macromolecular Bioscience, 2013, 13, 215-226.	2.1	11
58	A Microfluidic Split-Flow Technology for Product Characterization in Continuous Low-Volume Nanoparticle Synthesis. Micromachines, 2019, 10, 179.	1.4	11
59	Chemical stability of phospholipid-stabilized supercooled smectic cholesteryl myristate nanoparticles. European Journal of Pharmaceutics and Biopharmaceutics, 2012, 82, 262-271.	2.0	10
60	Influence of membrane structure on the preparation of colloidal lipid dispersions by premix membrane emulsification. International Journal of Pharmaceutics, 2013, 446, 59-62.	2.6	10
61	Spray drying of API nanosuspensions: Importance of drying temperature, type and content of matrix former and particle size for successful formulation and process development. European Journal of Pharmaceutics and Biopharmaceutics, 2020, 152, 63-71.	2.0	10
62	PEGylation of supercooled smectic cholesteryl myristate nanoparticles. European Journal of Pharmaceutics and Biopharmaceutics, 2012, 81, 409-417.	2.0	9
63	Carrier characteristics influence the kinetics of passive drug loading into lipid nanoemulsions. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 126, 132-139.	2.0	9
64	Influence of process and formulation parameters on the preparation of solid lipid nanoparticles by dual centrifugation. International Journal of Pharmaceutics: X, 2021, 3, 100085.	1.2	9
65	Drug localization and its effect on the physical stability of poloxamer 188-stabilized colloidal lipid emulsions. International Journal of Pharmaceutics, 2021, 599, 120394.	2.6	7
66	Influence of drug loading on the physical stability of phospholipid-stabilised colloidal lipid emulsions. International Journal of Pharmaceutics: X, 2020, 2, 100060.	1.2	6
67	Continuous Production of Lipid Nanoparticles by Ultrasoundâ€Assisted Microfluidic Antisolvent Precipitation. Chemical Engineering and Technology, 2021, 44, 1641-1650.	0.9	6
68	Horseshoe lamination mixer (HLM) sets new standards in the production of monodisperse lipid nanoparticles. Lab on A Chip, 2022, 22, 3025-3044.	3.1	6
69	Protective Filtration for Microfluidic Nanoparticle Precipitation for Pharmaceutical Applications. Chemical Engineering and Technology, 2021, 44, 457-464.	0.9	5
70	Heat Treatment of Poloxamer-Stabilized Triglyceride Nanodispersions: Effects and Underlying Mechanism. Molecular Pharmaceutics, 2018, 15, 3111-3120.	2.3	4
71	Self-dispersing formulations for the delivery of poorly soluble drugs – Miscibility of phosphatidylcholines with oils and fats. European Journal of Pharmaceutics and Biopharmaceutics, 2020, 151, 209-219.	2.0	4
72	An improved method for the simultaneous determination of water uptake and swelling of tablets. International Journal of Pharmaceutics, 2021, 595, 120229.	2.6	4

#	Article	IF	CITATIONS
73	Premix Membrane Emulsification: Preparation and Stability of Medium-Chain Triglyceride Emulsions with Droplet Sizes below 100 nm. Molecules, 2021, 26, 6029.	1.7	4
74	Characterization of Solid Lipid Nano-and Microparticles. , 2004, , 41-66.		3
75	Variations in polyethylene glycol brands and their influence on the preparation process of hydrogel microspheres. European Journal of Pharmaceutics and Biopharmaceutics, 2013, 85, 1215-1218.	2.0	3
76	Suitability of phosphatidylcholine-based formulations for liquid filling in hard capsules. European Journal of Pharmaceutical Sciences, 2020, 153, 105470.	1.9	3
77	Transfer of Lipophilic Drugs from Nanoemulsions into Lipid-Containing Alginate Microspheres. Pharmaceutics, 2021, 13, 173.	2.0	3
78	Transfer Investigations of Lipophilic Drugs from Lipid Nanoemulsions to Lipophilic Acceptors: Contributing Effects of Cholesteryl Esters and Albumin as Acceptor Structures. Pharmaceuticals, 2021, 14, 865.	1.7	3
79	Tablet formulation development focusing on the functional behaviour of water uptake and swelling. International Journal of Pharmaceutics: X, 2021, 3, 100103.	1.2	3
80	Spatially and Temporally Controllable BMP-2 and TGF-β ₃ Double Release From Polycaprolactone Fiber Scaffolds via Chitosan-Based Polyelectrolyte Coatings. ACS Biomaterials Science and Engineering, 2024, 10, 89-98.	2.6	3
81	Light and Electron Microscopy. Advances in Delivery Science and Technology, 2016, , 491-522.	0.4	2
82	ELISA- and Activity Assay-Based Quantification of BMP-2 Released In Vitro Can Be Biased by Solubility in "Physiological―Buffers and an Interfering Effect of Chitosan. Pharmaceutics, 2021, 13, 582.	2.0	2
83	Tablet Disintegration and Dispersion under In Vivo-like Hydrodynamic Conditions. Pharmaceutics, 2022, 14, 208.	2.0	2