## Henning Prommer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6544277/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                          | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | MODFLOW/MT3DMS-Based Reactive Multicomponent Transport Modeling. Ground Water, 2003, 41, 247-257.                                                                                                                | 1.3  | 256       |
| 2  | Analytical approximations for real values of the Lambert W-function. Mathematics and Computers in Simulation, 2000, 53, 95-103.                                                                                  | 4.4  | 198       |
| 3  | Modelling the fate of oxidisable organic contaminants in groundwater. Advances in Water Resources, 2002, 25, 945-983.                                                                                            | 3.8  | 157       |
| 4  | Tideâ€induced recirculation across the aquiferâ€ocean interface. Water Resources Research, 2007, 43, .                                                                                                           | 4.2  | 156       |
| 5  | Identification of Temperature-Dependent Water Quality Changes during a Deep Well Injection<br>Experiment in a Pyritic Aquifer. Environmental Science & Technology, 2005, 39, 2200-2209.                          | 10.0 | 129       |
| 6  | Modeling Seasonal Redox Dynamics and the Corresponding Fate of the Pharmaceutical Residue<br>Phenazone During Artificial Recharge of Groundwater. Environmental Science & Technology,<br>2006, 40, 6615-6621.    | 10.0 | 124       |
| 7  | Colloid release and clogging in porous media: Effects of solution ionic strength and flow velocity.<br>Journal of Contaminant Hydrology, 2015, 181, 161-171.                                                     | 3.3  | 124       |
| 8  | The river–groundwater interface as a hotspot for arsenic release. Nature Geoscience, 2020, 13,<br>288-295.                                                                                                       | 12.9 | 104       |
| 9  | The impact of variably saturated conditions on hydrogeochemical changes during artificial recharge of groundwater. Applied Geochemistry, 2005, 20, 1409-1426.                                                    | 3.0  | 97        |
| 10 | Identifying and Quantifying the Intermediate Processes during Nitrate-Dependent Iron(II) Oxidation.<br>Environmental Science & Technology, 2018, 52, 5771-5781.                                                  | 10.0 | 95        |
| 11 | Three-dimensional model for multi-component reactive transport with variable density groundwater flow. Environmental Modelling and Software, 2006, 21, 615-628.                                                  | 4.5  | 94        |
| 12 | Modelling of physical and reactive processes during biodegradation of a hydrocarbon plume under transient groundwater flow conditions. Journal of Contaminant Hydrology, 2002, 59, 113-131.                      | 3.3  | 93        |
| 13 | Geochemical evolution of groundwater in carbonate aquifers in Taiyuan, northern China. Applied<br>Geochemistry, 2011, 26, 884-897.                                                                               | 3.0  | 91        |
| 14 | Biogeochemical and Isotopic Gradients in a BTEX/PAH Contaminant Plume: Model-Based Interpretation of a High-Resolution Field Data Set. Environmental Science & amp; Technology, 2009, 43, 8206-8212.             | 10.0 | 90        |
| 15 | Process-Based Reactive Transport Model To Quantify Arsenic Mobility during Aquifer Storage and Recovery of Potable Water. Environmental Science & Technology, 2011, 45, 6924-6931.                               | 10.0 | 90        |
| 16 | Beyond the Rayleigh Equation: Reactive Transport Modeling of Isotope Fractionation Effects to<br>Improve Quantification of Biodegradation. Environmental Science & Technology, 2008, 42,<br>2457-2463.           | 10.0 | 89        |
| 17 | Fringe-Controlled Natural Attenuation of Phenoxy Acids in a Landfill Plume:  Integration of Field-Scale<br>Processes by Reactive Transport Modeling. Environmental Science & Technology, 2006, 40,<br>4732-4738. | 10.0 | 81        |
| 18 | Elucidating temperature effects on seasonal variations of biogeochemical turnover rates during riverbank filtration. Journal of Hydrology, 2012, 428-429, 104-115.                                               | 5.4  | 75        |

| #  | Article                                                                                                                                                                                                                                            | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Effects of hydrodynamic dispersion on plume lengths for instantaneous bimolecular reactions.<br>Advances in Water Resources, 2004, 27, 803-813.                                                                                                    | 3.8  | 72        |
| 20 | Modeling of carbon cycling and biogeochemical changes during injection and recovery of reclaimed water at Bolivar, South Australia. Water Resources Research, 2005, 41, .                                                                          | 4.2  | 67        |
| 21 | A fieldâ€scale reactive transport model for U(VI) migration influenced by coupled multirate mass transfer and surface complexation reactions. Water Resources Research, 2010, 46, .                                                                | 4.2  | 66        |
| 22 | Evaluation of Conceptual and Numerical Models for Arsenic Mobilization and Attenuation during<br>Managed Aquifer Recharge. Environmental Science & Technology, 2010, 44, 5035-5041.                                                                | 10.0 | 63        |
| 23 | Numerical Modeling of Arsenic Mobility during Reductive Iron-Mineral Transformations.<br>Environmental Science & Technology, 2016, 50, 2459-2467.                                                                                                  | 10.0 | 62        |
| 24 | Spatial and temporal evolution of groundwater arsenic contamination in the Red River delta, Vietnam:<br>Interplay of mobilisation and retardation processes. Science of the Total Environment, 2020, 717,<br>137143.                               | 8.0  | 61        |
| 25 | Model-Based Analysis of Arsenic Immobilization via Iron Mineral Transformation under Advective<br>Flows. Environmental Science & Technology, 2018, 52, 9243-9253.                                                                                  | 10.0 | 57        |
| 26 | Contribution of anaerobic microbial activity to natural attenuation of benzene in groundwater.<br>Engineering Geology, 2003, 70, 343-349.                                                                                                          | 6.3  | 55        |
| 27 | Okavango Delta Islands: Interaction between density-driven flow and geochemical reactions under evapo-concentration. Journal of Hydrology, 2007, 335, 389-405.                                                                                     | 5.4  | 55        |
| 28 | Multicomponent reactive transport simulation of the Elder problem: Effects of chemical reactions on salt plume development. Water Resources Research, 2007, 43, .                                                                                  | 4.2  | 53        |
| 29 | Geochemical controls on sediment reactivity and buffering processes in a heterogeneous aquifer.<br>Applied Geochemistry, 2010, 25, 261-275.                                                                                                        | 3.0  | 49        |
| 30 | Suitability of temperature, hydraulic heads, and acesulfame to quantify wastewaterâ€related fluxes in the hyporheic and riparian zone. Water Resources Research, 2013, 49, 426-440.                                                                | 4.2  | 49        |
| 31 | Mobilization of Arsenic and Other Naturally Occurring Contaminants during Managed Aquifer<br>Recharge: A Critical Review. Environmental Science & Technology, 2021, 55, 2208-2223.                                                                 | 10.0 | 46        |
| 32 | A critical evaluation of combined engineered and aquifer treatment systems in water recycling. Water<br>Science and Technology, 2008, 57, 753-762.                                                                                                 | 2.5  | 44        |
| 33 | Geochemical reconstruction of the provenance, weathering and deposition of detrital-dominated<br>sediments in the Perth Basin: The Cretaceous Leederville Formation, south-west Australia. Sedimentary<br>Geology, 2011, 236, 62-76.               | 2.1  | 43        |
| 34 | Processes governing arsenic retardation on <scp>P</scp> leistocene sediments: Adsorption experiments and modelâ€based analysis. Water Resources Research, 2017, 53, 4344-4360.                                                                     | 4.2  | 42        |
| 35 | Aerobic Biodegradation of Chlorinated Ethenes in a Fractured Bedrock Aquifer: Quantitative<br>Assessment by Compound-Specific Isotope Analysis (CSIA) and Reactive Transport Modeling.<br>Environmental Science & Technology, 2009, 43, 7458-7464. | 10.0 | 41        |
| 36 | A one-dimensional reactive multi-component transport model for biodegradation of petroleum hydrocarbons in groundwater. Environmental Modelling and Software, 1998, 14, 213-223.                                                                   | 4.5  | 39        |

| #  | Article                                                                                                                                                                                                                 | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Geochemical changes during biodegradation of petroleum hydrocarbons: field investigations and biogeochemical modelling. Organic Geochemistry, 1999, 30, 423-435.                                                        | 1.8  | 39        |
| 38 | Electrokinetic in situ oxidation remediation: Assessment of parameter sensitivities and the influence<br>of aquifer heterogeneity on remediation efficiency. Journal of Contaminant Hydrology, 2012, 136-137,<br>72-85. | 3.3  | 34        |
| 39 | Controlling Arsenic Mobilization during Managed Aquifer Recharge: The Role of Sediment<br>Heterogeneity. Environmental Science & Technology, 2020, 54, 8728-8738.                                                       | 10.0 | 33        |
| 40 | Numerical modelling for design and evaluation of groundwater remediation schemes. Ecological<br>Modelling, 2000, 128, 181-195.                                                                                          | 2.5  | 32        |
| 41 | Evaluation of saline tracer performance during electrical conductivity groundwater monitoring.<br>Journal of Contaminant Hydrology, 2011, 123, 157-166.                                                                 | 3.3  | 32        |
| 42 | Comparison of split-operator methods for solving coupled chemical non-equilibrium reaction/groundwater transport models. Mathematics and Computers in Simulation, 2000, 53, 113-127.                                    | 4.4  | 31        |
| 43 | Modelling of iron cycling and its impact on the electron balance at a petroleum hydrocarbon<br>contaminated site in Hnevice, Czech Republic. Journal of Contaminant Hydrology, 2007, 89, 270-294.                       | 3.3  | 31        |
| 44 | Comparison of parameter sensitivities between a laboratory and fieldâ€scale model of uranium<br>transport in a dual domain, distributed rate reactive system. Water Resources Research, 2010, 46, .                     | 4.2  | 31        |
| 45 | Identification and quantification of redox and pH buffering processes in a heterogeneous, low<br>carbonate aquifer during managed aquifer recharge. Water Resources Research, 2016, 52, 4003-4025.                      | 4.2  | 30        |
| 46 | Influence of calcite on uranium(VI) reactive transport in the groundwater–river mixing zone. Journal of Contaminant Hydrology, 2014, 156, 27-37.                                                                        | 3.3  | 29        |
| 47 | Quantifying Reactive Transport Processes Governing Arsenic Mobility after Injection of Reactive<br>Organic Carbon into a Bengal Delta Aquifer. Environmental Science & Technology, 2017, 51,<br>8471-8480.              | 10.0 | 29        |
| 48 | Modelling of geochemical and isotopic changes in a column experiment for degradation of TCE by zero-valent iron. Journal of Contaminant Hydrology, 2008, 97, 13-26.                                                     | 3.3  | 28        |
| 49 | Enhancing Roxarsone Degradation and <i>In Situ</i> Arsenic Immobilization Using a Sulfate-Mediated<br>Bioelectrochemical System. Environmental Science & Technology, 2021, 55, 393-401.                                 | 10.0 | 26        |
| 50 | Feasibility of electrokinetic in situ leaching of gold. Hydrometallurgy, 2018, 175, 70-78.                                                                                                                              | 4.3  | 25        |
| 51 | Toward a more sustainable mining future with electrokinetic in situ leaching. Science Advances, 2021, 7, .                                                                                                              | 10.3 | 25        |
| 52 | Kinetic Reaction Modeling Framework for Identifying and Quantifying Reductant Reactivity in<br>Heterogeneous Aquifer Sediments. Environmental Science & Technology, 2010, 44, 6698-6705.                                | 10.0 | 24        |
| 53 | Heat and mass transport during a groundwater replenishment trial in a highly heterogeneous<br>aquifer. Water Resources Research, 2014, 50, 9463-9483.                                                                   | 4.2  | 24        |
| 54 | Deoxygenation Prevents Arsenic Mobilization during Deepwell Injection into Sulfide-Bearing Aquifers.<br>Environmental Science & Technology, 2018, 52, 13801-13810.                                                      | 10.0 | 24        |

| #  | Article                                                                                                                                                                                                                      | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Modeling the longâ€ŧerm and transient evolution of biogeochemical and isotopic signatures in coal<br>tar–contaminated aquifers. Water Resources Research, 2011, 47, .                                                        | 4.2  | 23        |
| 56 | Using Reactive Transport Models to Quantify and Predict Groundwater Quality. Elements, 2019, 15,<br>87-92.                                                                                                                   | 0.5  | 23        |
| 57 | Numerical evaluation of voltage gradient constraints on electrokinetic injection of amendments.<br>Advances in Water Resources, 2012, 38, 60-69.                                                                             | 3.8  | 22        |
| 58 | In situ recovery of gold: Column leaching experiments and reactive transport modeling.<br>Hydrometallurgy, 2012, 125-126, 16-23.                                                                                             | 4.3  | 22        |
| 59 | Assessment of controlling processes for field-scale uranium reactive transport under highly transient flow conditions. Water Resources Research, 2014, 50, 1006-1024.                                                        | 4.2  | 22        |
| 60 | Multiscale Characterization and Quantification of Arsenic Mobilization and Attenuation During<br>Injection of Treated Coal Seam Gas Coproduced Water into Deep Aquifers. Water Resources Research,<br>2017, 53, 10779-10801. | 4.2  | 22        |
| 61 | Carbon and methane cycling in arsenic-contaminated aquifers. Water Research, 2021, 200, 117300.                                                                                                                              | 11.3 | 22        |
| 62 | Fluoride and phosphate release from carbonate-rich fluorapatite during managed aquifer recharge.<br>Journal of Hydrology, 2018, 562, 809-820.                                                                                | 5.4  | 21        |
| 63 | Reactive Transport of Iomeprol during Stream-Groundwater Interactions. Environmental Science<br>& Technology, 2014, 48, 199-207.                                                                                             | 10.0 | 20        |
| 64 | Numerical investigation of coupled densityâ€driven flow and hydrogeochemical processes below playas. Water Resources Research, 2015, 51, 9338-9352.                                                                          | 4.2  | 19        |
| 65 | Fate of arsenic, phosphate and ammonium plumes in a coastal aquifer affected by saltwater intrusion.<br>Journal of Contaminant Hydrology, 2015, 179, 116-131.                                                                | 3.3  | 19        |
| 66 | Investigation into the microbial communities and associated crude oil-contamination along a Gulf<br>War impacted groundwater system in Kuwait. Water Research, 2020, 170, 115314.                                            | 11.3 | 19        |
| 67 | Similitude applied to centrifugal scaling of unsaturated flow. Water Resources Research, 2001, 37, 2471-2479.                                                                                                                | 4.2  | 18        |
| 68 | Modelling the fate of styrene in a mixed petroleum hydrocarbon plume. Journal of Contaminant<br>Hydrology, 2009, 105, 38-55.                                                                                                 | 3.3  | 18        |
| 69 | Reactive transport modeling of thorium in a cloud computing environment. Journal of Geochemical Exploration, 2014, 144, 63-73.                                                                                               | 3.2  | 18        |
| 70 | Modeling of biogeochemical processes in a barrier island freshwater lens (Spiekeroog, Germany).<br>Journal of Hydrology, 2019, 575, 1133-1144.                                                                               | 5.4  | 18        |
| 71 | Origin of a Mixed Brominated Ethene Groundwater Plume:Â Contaminant Degradation Pathways and Reactions. Environmental Science & Technology, 2007, 41, 1352-1358.                                                             | 10.0 | 17        |
| 72 | A process-based reactive hybrid transport model for coupled discrete conduit–continuum systems.<br>Journal of Hydrology, 2007, 347, 23-34.                                                                                   | 5.4  | 17        |

| #  | Article                                                                                                                                                                                                       | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Simulating adsorption of U(VI) under transient groundwater flow and hydrochemistry: Physical versus chemical nonequilibrium model. Water Resources Research, 2011, 47, .                                      | 4.2  | 16        |
| 74 | Evolution of carbon isotope signatures during reactive transport of hydrocarbons in heterogeneous aquifers. Journal of Contaminant Hydrology, 2015, 174, 10-27.                                               | 3.3  | 16        |
| 75 | Validity and slopes of the linear equation of state for natural brines in salt lake systems. Journal of<br>Hydrology, 2015, 523, 190-195.                                                                     | 5.4  | 16        |
| 76 | Electrokinetic in situ leaching of gold from intact ore. Hydrometallurgy, 2018, 178, 124-136.                                                                                                                 | 4.3  | 16        |
| 77 | Fermentation, methanotrophy and methanogenesis influence sedimentary Fe and As dynamics in As-affected aquifers in Vietnam. Science of the Total Environment, 2021, 779, 146501.                              | 8.0  | 16        |
| 78 | Assessment of amenability of sandstone-hosted uranium deposit for in-situ recovery.<br>Hydrometallurgy, 2018, 179, 157-166.                                                                                   | 4.3  | 15        |
| 79 | Using heuristic multi-objective optimization for quantifying predictive uncertainty associated with groundwater flow and reactive transport models. Journal of Hydrology, 2019, 577, 123999.                  | 5.4  | 15        |
| 80 | Model-Based Analysis of Reactive Transport Processes Governing Fluoride and Phosphate Release and<br>Attenuation during Managed Aquifer Recharge. Environmental Science & Technology, 2020, 54,<br>2800-2811. | 10.0 | 15        |
| 81 | Effects of Increasing Acidity on Metal(loid) Bioprecipitation in Groundwater:  Column Studies.<br>Environmental Science & Technology, 2007, 41, 7131-7137.                                                    | 10.0 | 14        |
| 82 | Variable density groundwater flow: from modelling to applications. , 2010, , 87-118.                                                                                                                          |      | 14        |
| 83 | Model-based analysis of Ĩ´34 S signatures to trace sedimentary pyrite oxidation during managed aquifer recharge in a heterogeneous aquifer. Journal of Hydrology, 2017, 548, 368-381.                         | 5.4  | 14        |
| 84 | Sources of ammonium enriched in groundwater in the central Yangtze River Basin: Anthropogenic or geogenic?. Environmental Pollution, 2022, 306, 119463.                                                       | 7.5  | 14        |
| 85 | Modeling of Microbial Dynamics and Geochemical Changes in a Metal Bioprecipitation Experiment.<br>Environmental Science & Technology, 2007, 41, 8433-8438.                                                    | 10.0 | 13        |
| 86 | Prediction of diffuse sulfate emissions from a former mining district and associated groundwater discharges to surface waters. Journal of Hydrology, 2014, 513, 169-178.                                      | 5.4  | 13        |
| 87 | Using predictive uncertainty analysis to optimise tracer test design and data acquisition. Journal of<br>Hydrology, 2014, 515, 191-204.                                                                       | 5.4  | 13        |
| 88 | Assessing and Managing Large‣cale Geochemical Impacts From Groundwater Replenishment With<br>Highly Treated Reclaimed Wastewater. Water Resources Research, 2020, 56, e2020WR028066.                          | 4.2  | 13        |
| 89 | Process-based modeling of arsenic(III) oxidation by manganese oxides under circumneutral pH conditions. Water Research, 2020, 185, 116195.                                                                    | 11.3 | 13        |
| 90 | Response of anaerobic granular sludge to long-term loading of roxarsone: From macro- to micro-scale perspective. Water Research, 2021, 204, 117599.                                                           | 11.3 | 13        |

| #   | Article                                                                                                                                                                                                                 | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Simulating MODFLOWâ€Based Reactive Transport Under Radially Symmetric Flow Conditions. Ground Water, 2013, 51, 398-413.                                                                                                 | 1.3  | 12        |
| 92  | Physical and Chemical Controls on the Simultaneous Occurrence of Young and Old Groundwater<br>Inferred From Multiple Age Tracers. Water Resources Research, 2018, 54, 9514-9532.                                        | 4.2  | 12        |
| 93  | Redox Dependent Arsenic Occurrence and Partitioning in an Industrial Coastal Aquifer: Evidence from<br>High Spatial Resolution Characterization of Groundwater and Sediments. Water (Switzerland), 2020,<br>12, 2932.   | 2.7  | 12        |
| 94  | Effects of divalent heavy metal cations on the synthesis and characteristics of magnetite. Chemical Geology, 2020, 547, 119669.                                                                                         | 3.3  | 12        |
| 95  | Fluoride release from carbonate-rich fluorapatite during managed aquifer recharge: Model-based development of mitigation strategies. Water Research, 2021, 193, 116880.                                                 | 11.3 | 12        |
| 96  | Reactive transport controls on sandy acid sulfate soils and impacts on shallow groundwater quality.<br>Water Resources Research, 2014, 50, 4924-4952.                                                                   | 4.2  | 11        |
| 97  | Zero valent iron remediation of a mixed brominated ethene contaminated groundwater. Journal of Contaminant Hydrology, 2009, 103, 109-118.                                                                               | 3.3  | 10        |
| 98  | Model-Based Integration and Analysis of Biogeochemical and Isotopic Dynamics in a Nitrate-Polluted<br>Pyritic Aquifer. Environmental Science & Technology, 2013, 47, 130909083606007.                                   | 10.0 | 10        |
| 99  | A general reactive transport modeling framework for simulating and interpreting groundwater14C age and δ13C. Water Resources Research, 2015, 51, 359-376.                                                               | 4.2  | 10        |
| 100 | Identifying remedial solutions through optimal bioremediation design under real-world field conditions. Journal of Contaminant Hydrology, 2021, 237, 103751.                                                            | 3.3  | 10        |
| 101 | Temperature dependence of nitrate-reducing Fe(II) oxidation by <i>Acidovorax</i> strain BoFeN1 –<br>evaluating the role of enzymatic vs. abiotic Fe(II) oxidation by nitrite. FEMS Microbiology Ecology,<br>2022, 97, . | 2.7  | 10        |
| 102 | Biodegradability of legacy crude oil contamination in Gulf War damaged groundwater wells in<br>Northern Kuwait. Biodegradation, 2019, 30, 71-85.                                                                        | 3.0  | 9         |
| 103 | Modelling of an enhanced PAH attenuation experiment and associated biogeochemical changes at a former gasworks site in southern Germany. Journal of Contaminant Hydrology, 2011, 119, 99-112.                           | 3.3  | 8         |
| 104 | <scp>PHT3Dâ€UZF</scp> : A Reactive Transport Model for Variablyâ€Saturated Porous Media. Ground<br>Water, 2016, 54, 23-34.                                                                                              | 1.3  | 8         |
| 105 | Elucidating the fate of a mixed toluene, DHM, methanol, and i-propanol plume during in situ bioremediation. Journal of Contaminant Hydrology, 2017, 201, 6-18.                                                          | 3.3  | 8         |
| 106 | Reactive Transport Modeling of Swelling Processes in Clayâ€sulfate Rocks. Water Resources Research,<br>2018, 54, 6543-6565.                                                                                             | 4.2  | 8         |
| 107 | Unraveling biogeochemical complexity through better integration of experiments and modeling.<br>Environmental Sciences: Processes and Impacts, 2021, 23, 1825-1833.                                                     | 3.5  | 8         |
| 108 | Analyzing the heave of an entire city: Modeling of swelling processes in clay-sulfate rocks.<br>Engineering Geology, 2019, 261, 105259.                                                                                 | 6.3  | 7         |

| #   | Article                                                                                                                                                                                                 | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | In situ arsenic immobilisation for coastal aquifers using stimulated iron cycling: Lab-based viability assessment. Applied Geochemistry, 2022, 136, 105155.                                             | 3.0  | 7         |
| 110 | Suitability of precipitation waters as semi-artificial groundwater tracers. Journal of Hydrology, 2019, 577, 123982.                                                                                    | 5.4  | 6         |
| 111 | Modeling Bioremediation of Contaminated Groundwater. , 2014, , 108-138.                                                                                                                                 |      | 5         |
| 112 | A reactive transport benchmark on modeling biogenic uraninite re-oxidation by Fe(III)-(hydr)oxides.<br>Computational Geosciences, 2015, 19, 569-583.                                                    | 2.4  | 5         |
| 113 | Factors controlling iodine enrichment in a coastal plain aquifer in the North Jiangsu Yishusi Plain,<br>China. Journal of Contaminant Hydrology, 2021, 243, 103894.                                     | 3.3  | 5         |
| 114 | Predictive modelling of dispersion controlled reactive plumes at the laboratory-scale. Journal of Contaminant Hydrology, 2007, 93, 304-315.                                                             | 3.3  | 4         |
| 115 | Noble gas constraints on the fate of arsenic in groundwater. Water Research, 2022, 214, 118199.                                                                                                         | 11.3 | 4         |
| 116 | Singleâ€Rate Dualâ€Domain Mass Transfer Model: Elucidating Temperature Effects. Water Resources<br>Research, 2021, 57, e2020WR029474.                                                                   | 4.2  | 3         |
| 117 | Tidal Dynamics of Groundwater Flow and Contaminant Transport in Coastal Aquifers. , 2003, , .                                                                                                           |      | 2         |
| 118 | Geochemical changes under variably saturated conditions during artificial recharge via ponded infiltration — A field study. , 2005, , 51-63.                                                            |      | 2         |
| 119 | Ore characterization, hydrometallurgical and reactive transport studies for in-place leaching of oxidized gold deposits. Mining, Metallurgy and Exploration, 2010, 27, 72-80.                           | 0.8  | 2         |
| 120 | Australian exemplars of sustainable and economic managed aquifer recharge. Water E-Journal, 2021, 5,<br>1-19.                                                                                           | 0.2  | 2         |
| 121 | Process oriented quantification of mine dump pollutant inventories on the large scale—The case of the lignite mining district Lusatia, Germany. Journal of Geochemical Exploration, 2012, 112, 161-173. | 3.2  | 1         |
| 122 | Multi-isotope studies investigating recharge and inter-aquifer connectivity in coal seam gas areas<br>(Qld, NSW) and shale gas areas (NT). APPEA Journal, 2020, 60, 335.                                | 0.2  | 1         |
| 123 | MODFLOW-Based Tools for Simulation of Variable-Density Groundwater Flow. , 2003, , .                                                                                                                    |      | 0         |
| 124 | Numerical modeling of arsenic mobility. Arsenic in the Environment, 2014, , 35-52.                                                                                                                      | 0.0  | 0         |