Linchuan Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6544223/publications.pdf

Version: 2024-02-01

393982 676716 4,131 21 19 22 citations h-index g-index papers 25 25 25 5330 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Brassinosteroid Regulates Cell Elongation by Modulating Gibberellin Metabolism in Rice Â. Plant Cell, 2014, 26, 4376-4393.	3.1	589
2	Variation in NRT1.1B contributes to nitrate-use divergence between rice subspecies. Nature Genetics, 2015, 47, 834-838.	9.4	527
3	OsNAP connects abscisic acid and leaf senescence by fine-tuning abscisic acid biosynthesis and directly targeting senescence-associated genes in rice. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 10013-10018.	3.3	449
4	Control of grain size and rice yield by GL2-mediated brassinosteroid responses. Nature Plants, 2016, 2, 15195.	4.7	342
5	OsbZIP71, a bZIP transcription factor, confers salinity and drought tolerance in rice. Plant Molecular Biology, 2014, 84, 19-36.	2.0	311
6	DWARF AND LOW-TILLERING Acts as a Direct Downstream Target of a GSK3/SHAGGY-Like Kinase to Mediate Brassinosteroid Responses in Rice. Plant Cell, 2012, 24, 2562-2577.	3.1	292
7	Nitric Oxide and Protein <i>S</i> -Nitrosylation Are Integral to Hydrogen Peroxide-Induced Leaf Cell Death in Rice Â. Plant Physiology, 2012, 158, 451-464.	2.3	290
8	Activation of <i>Big Grain1</i> significantly improves grain size by regulating auxin transport in rice. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 11102-11107.	3.3	265
9	Nitrate–NRT1.1B–SPX4 cascade integrates nitrogen and phosphorus signalling networks in plants. Nature Plants, 2019, 5, 401-413.	4.7	263
10	<i>LEAF TIP NECROSIS1</i> Plays a Pivotal Role in the Regulation of Multiple Phosphate Starvation Responses in Rice \hat{A} \hat{A} . Plant Physiology, 2011, 156, 1101-1115.	2.3	208
11	The Histone Methyltransferase SDG724 Mediates H3K36me2/3 Deposition at <i>MADS50</i> and <i>RFT1</i> and Promotes Flowering in Rice. Plant Cell, 2012, 24, 3235-3247.	3.1	112
12	Semiâ€dominant mutations in the CCâ€NB‣RRâ€type <i>R</i> gene, <i>NLS1</i> , lead to constitutive activation of defense responses in rice. Plant Journal, 2011, 66, 996-1007.	on 2.8	82
13	<i>Sig Grain3,</i> encoding a purine permease, regulates grain size via modulating cytokinin transport in rice. Journal of Integrative Plant Biology, 2019, 61, 581-597.	4.1	73
14	A Rice Plastidial Nucleotide Sugar Epimerase Is Involved in Galactolipid Biosynthesis and Improves Photosynthetic Efficiency. PLoS Genetics, 2011, 7, e1002196.	1.5	71
15	Communications Between the Endoplasmic Reticulum and Other Organelles During Abiotic Stress Response in Plants. Frontiers in Plant Science, 2019, 10, 749.	1.7	61
16	RLIN1, encoding a putative coproporphyrinogen III oxidase, is involved inÂlesion initiation in rice. Journal of Genetics and Genomics, 2011, 38, 29-37.	1.7	60
17	EBS7 is a plant-specific component of a highly conserved endoplasmic reticulum-associated degradation system in <i>Arabidopsis</i> Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 12205-12210.	3.3	49
18	A Temperature-Sensitive Misfolded bri1-301 Receptor Requires Its Kinase Activity to Promote Growth. Plant Physiology, 2018, 178, 1704-1719.	2.3	26

#	Article	IF	CITATIONS
19	PAWH1 and PAWH2 are plant-specific components of an Arabidopsis endoplasmic reticulum-associated degradation complex. Nature Communications, 2019, 10, 3492.	5.8	26
20	The Crucial Role of Demannosylating Asparagine-Linked Glycans in ERADicating Misfolded Glycoproteins in the Endoplasmic Reticulum. Frontiers in Plant Science, 2020, 11, 625033.	1.7	11
21	A Predominant Role of AtEDEM1 in Catalyzing a Rate-Limiting Demannosylation Step of an Arabidopsis Endoplasmic Reticulum-Associated Degradation Process. Frontiers in Plant Science, 0, 13, .	1.7	0