
Xiangdong Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6544183/publications.pdf Version: 2024-02-01

XIANCDONC LL

#	Article	IF	CITATIONS
1	Modelling of evaporation of cough droplets in inhomogeneous humidity fields using the multi-component Eulerian-Lagrangian approach. Building and Environment, 2018, 128, 68-76.	3.0	105
2	Evaluation of airborne disease infection risks in an airliner cabin using the Lagrangian-based Wells-Riley approach. Building and Environment, 2017, 121, 79-92.	3.0	78
3	Thermal effect of human body on cough droplets evaporation and dispersion in an enclosed space. Building and Environment, 2019, 148, 96-106.	3.0	78
4	Numerical study of the effects of human body heat on particle transport andÂinhalation in indoor environment. Building and Environment, 2013, 59, 1-9.	3.0	65
5	Particle inhalation and deposition in a human nasal cavity from the external surrounding environment. Building and Environment, 2012, 47, 32-39.	3.0	61
6	CFD study of the effects of furniture layout on indoor air quality under typical office ventilation schemes. Building Simulation, 2014, 7, 263-275.	3.0	58
7	An integrated predictive model of the long-term performance of ground source heat pump (GSHP) systems. Energy and Buildings, 2018, 159, 309-318.	3.1	53
8	A review of nucleate boiling on nanoengineered surfaces – The nanostructures, phenomena and mechanisms. International Journal of Heat and Mass Transfer, 2019, 141, 20-33.	2.5	51
9	Numerical investigation of indoor particulate contaminant transport using the Eulerian-Eulerian and Eulerian-Lagrangian two-phase flow models. Experimental and Computational Multiphase Flow, 2020, 2, 31-40.	1.9	43
10	Effects of cough-jet on airflow and contaminant transport in an airliner cabin section. Journal of Computational Multiphase Flows, 2018, 10, 72-82.	0.8	41
11	An Eulerian–Eulerian model for particulate matter transport in indoor spaces. Building and Environment, 2015, 86, 191-202.	3.0	40
12	A PMV-based HVAC control strategy for office rooms subjected to solar radiation. Building and Environment, 2020, 177, 106863.	3.0	40
13	Numerical investigation of particle transport and inhalation using standing thermal manikins. Building and Environment, 2013, 60, 116-125.	3.0	37
14	Evaluation of manikin simplification methods for CFD simulations in occupied indoor environments. Energy and Buildings, 2016, 127, 611-626.	3.1	37
15	Overall performance evaluation of underfloor air distribution system with different heights of return vents. Energy and Buildings, 2017, 147, 176-187.	3.1	37
16	Numerical and experimental investigation of heat transfer on heating surface during subcooled boiling flow of liquid nitrogen. International Journal of Heat and Mass Transfer, 2009, 52, 1510-1516.	2.5	35
17	Source and trajectories of inhaled particles from a surrounding environment and its deposition in the respiratory airway. Inhalation Toxicology, 2013, 25, 280-291.	0.8	35
18	Numerical investigation of boiling flow of nitrogen in a vertical tube using the two-fluid model. Applied Thermal Engineering, 2006, 26, 2425-2432.	3.0	34

XIANGDONG LI

#	Article	IF	CITATIONS
19	Multi-objective optimization for designing of high-speed train cabin ventilation system using particle swarm optimization and multi-fidelity Kriging. Building and Environment, 2019, 155, 161-174.	3.0	33
20	On two-fluid modeling of nucleate boiling of dilute nanofluids. International Journal of Heat and Mass Transfer, 2014, 69, 443-450.	2.5	32
21	Experimental and numerical investigations on heat transfer in stratified subsurface materials. Applied Thermal Engineering, 2018, 135, 228-237.	3.0	31
22	A spatiotemporally resolved infection risk model for airborne transmission of COVID-19 variants in indoor spaces. Science of the Total Environment, 2022, 812, 152592.	3.9	29
23	The simplification of computer simulated persons (CSPs) in CFD models of occupied indoor spaces. Building and Environment, 2015, 93, 155-164.	3.0	28
24	Nucleate boiling of dilute nanofluids – Mechanism exploring and modeling. International Journal of Thermal Sciences, 2014, 84, 323-334.	2.6	27
25	Effects of structure and shape on thermal performance of Perforated Multi-Layer Insulation Blankets. Applied Thermal Engineering, 2009, 29, 1264-1266.	3.0	22
26	A parametric study of the heat flux partitioning model for nucleate boiling of nanofluids. International Journal of Thermal Sciences, 2015, 98, 42-50.	2.6	22
27	Evaluation of the eddy viscosity turbulence models for the simulation of convection–radiation coupled heat transfer in indoor environment. Energy and Buildings, 2019, 184, 8-18.	3.1	22
28	Effects of passenger thermal plume on the transport and distribution characteristics of airborne particles in an airliner cabin section. Science and Technology for the Built Environment, 2016, 22, 153-163.	0.8	21
29	A theoretical model for nucleate boiling of nanofluids considering the nanoparticle Brownian motion in liquid microlayer. International Journal of Heat and Mass Transfer, 2015, 91, 467-476.	2.5	19
30	Evaluation of models and methods to simulate thermal radiation in indoor spaces. Building and Environment, 2018, 144, 259-267.	3.0	19
31	Numerical and experimental investigation of pressure drop characteristics during upward boiling two-phase flow of nitrogen. International Journal of Heat and Mass Transfer, 2007, 50, 1971-1981.	2.5	18
32	The effects of diffuser type on thermal flow and contaminant transport in high-speed train (HST) cabins–Âa numerical study. International Journal of Ventilation, 2018, 17, 48-62.	0.2	18
33	Experimental investigations of the heat load effect on heat transfer of ground heat exchangers in a layered subsurface. Geothermics, 2019, 77, 75-82.	1.5	18
34	Multiscale modelling of nucleate boiling on nanocoatings for electronics cooling—From nanoscale to macroscale. Experimental and Computational Multiphase Flow, 2021, 3, 233-241.	1.9	17
35	Thermal comfort analysis of a high-speed train cabin considering the solar radiation effects. Indoor and Built Environment, 2020, 29, 1101-1117.	1.5	16
36	Experimental and numerical investigations of fluid flow and heat transfer in a cryogenic tank at loss of vacuum. Heat and Mass Transfer, 2010, 46, 395-404.	1.2	14

XIANGDONG LI

#	Article	IF	CITATIONS
37	Numerical investigation of micron particle inhalation by standing thermal manikins in horizontal airflows. Indoor and Built Environment, 2016, 25, 357-370.	1.5	14
38	Characterisation and analysis of indoor tornado for contaminant removal and emergency ventilation. Building and Environment, 2019, 164, 106345.	3.0	14
39	Experimental investigation on hydrogen adsorption performance of composite adsorbent in the tank with high vacuum multilayer insulation. Vacuum, 2009, 83, 1184-1190.	1.6	12
40	Numerical investigations of the effects of manikin simplifications on the thermal flow field in indoor spaces. Building Simulation, 2017, 10, 219-227.	3.0	12
41	Experimental investigation and theoretical analysis on measurement of hydrogen adsorption in vacuum system. International Journal of Hydrogen Energy, 2010, 35, 4347-4353.	3.8	11
42	Numerical modelling of air–nanofluid bubbly flows in a vertical tube using the MUltiple-SIze-Group (MUSIG) model. International Journal of Heat and Mass Transfer, 2016, 102, 856-866.	2.5	11
43	MUSIG modeling and evaluation of nitrogen bubble coalescence in a bottom-closed vertical tube. Aerospace Science and Technology, 2010, 14, 203-212.	2.5	10
44	Effects of manikin model simplification on CFD predictions of thermal flow field around human bodies. Indoor and Built Environment, 2017, 26, 1185-1197.	1.5	9
45	Effects of surface radiation on gaseous contaminants emission and dispersion in indoor environment – A numerical study. International Journal of Heat and Mass Transfer, 2019, 131, 854-862.	2.5	8
46	A computational fluid dynamics study on the effects of computer fan on indoor airflow and indoor air quality in breathing zone. Indoor and Built Environment, 2015, 24, 295-307.	1.5	7
47	The effects of nanoparticles on the lift force and drag force on bubbles in nanofluids: A two-fluid model study. International Journal of Thermal Sciences, 2017, 119, 1-8.	2.6	7
48	Effects of spontaneous nanoparticle adsorption on the bubble-liquid and bubble-bubble interactions in multi-dispersed bubbly systems – A review. International Journal of Heat and Mass Transfer, 2018, 120, 552-567.	2.5	6
49	Numerical Study on Effects of Air Return Height on Performance of an Underfloor Air Distribution System for Heating and Cooling. Energies, 2020, 13, 1070.	1.6	5
50	An Energy Saving Ventilation Strategy for Short-Term Occupied Rooms based on the Time-Dependent Concentration of CO2. International Journal of Ventilation, 2015, 14, 39-52.	0.2	4
51	Numerical investigation on boiling flow of liquid nitrogen in a vertical tube using bubble number density approach. Heat and Mass Transfer, 2016, 52, 877-886.	1.2	3
52	Modelling and critical analysis of bubbly flows of dilute nanofluids in a vertical tube. Nuclear Engineering and Design, 2016, 300, 173-180.	0.8	2
53	Progress of Particle Flow, Fluid/Solid Mechanics, and Heat Transfer in Advanced Gas/Water Nuclear Reactors. Science and Technology of Nuclear Installations, 2016, 2016, 1-2.	0.3	1