Zheshen Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6543801/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Continuous-variable quantum repeaters based on bosonic error-correction and teleportation: architecture and applications. Quantum Science and Technology, 2022, 7, 025018.	2.6	8
2	Demonstration of Entanglement-Enhanced Covert Sensing. Physical Review Letters, 2022, 129, .	2.9	11
3	Entanglement-Assisted Absorption Spectroscopy. , 2021, , .		Ο
4	Entanglement Distribution and Routing in a Multi-node Quantum Network Testbed. , 2021, , .		2
5	Development of Quantum Interconnects (QuICs) for Next-Generation Information Technologies. PRX Quantum, 2021, 2, .	3.5	172
6	Entanglement-assisted capacity regions and protocol designs for quantum multiple-access channels. Npj Quantum Information, 2021, 7, .	2.8	11
7	Entanglement-Assisted Communication Surpassing the Ultimate Classical Capacity. Physical Review Letters, 2021, 126, 250501.	2.9	25
8	Quantum-Enhanced Data Classification with a Variational Entangled Sensor Network. Physical Review X, 2021, 11, .	2.8	23
9	Distributed quantum sensing. Quantum Science and Technology, 2021, 6, 043001.	2.6	70
10	Entanglement-assisted multiple-access channels: capacity regions and protocol designs. , 2021, , .		0
11	Entanglement-Assisted Communication Surpassing the Ultimate Classical Capacity. , 2021, , .		1
12	Quantum-enhanced data classification with a variational entangled sensor network. , 2021, , .		1
13	Adaptive-Optics Enhanced Distribution of Entangled Photons over Turbulent Free-Space Optical Channels. , 2021, , .		Ο
14	Entangled Sensor Networks Empowered by Machine Learning. , 2021, , .		0
15	Entanglement-assisted multiple-access channels: capacity regions and protocol designs. , 2021, , .		Ο
16	Entanglement-Assisted Communication Surpassing the Ultimate Classical Capacity. , 2021, , .		0
17	Entanglement-Assisted Absorption Spectroscopy. Physical Review Letters, 2020, 125, 180502.	2.9	36
18	Practical Route to Entanglement-Assisted Communication Over Noisy Bosonic Channels. Physical Review Applied, 2020, 13, .	1.5	54

ZHESHEN ZHANG

#	Article	IF	CITATIONS
19	Demonstration of a Reconfigurable Entangled Radio-Frequency Photonic Sensor Network. Physical Review Letters, 2020, 124, 150502.	2.9	88
20	Quantum computing with multidimensional continuous-variable cluster states in a scalable photonic platform. Physical Review Research, 2020, 2, .	1.3	30
21	Frequency-Multiplexed Rate-Adaptive Quantum Key Distribution with High-Dimensional Encoding. , 2020, , .		1
22	Experimental Demonstration of an Entangled Radiofrequency-Photonic Sensor Network. , 2020, , .		1
23	Practical route to entanglement-enhanced communication over noisy bosonic channels. , 2020, , .		0
24	Practical route to entanglement-enhanced communication over noisy bosonic channels. , 2020, , .		0
25	Entanglement-Enhanced Physical-Layer Classifier Using Supervised Machine Learning. , 2020, , .		0
26	Experimental Demonstration of a Reconfigurable Entangled Radiofrequency-Photonic Sensor Network. , 2020, , .		0
27	Physical-Layer Supervised Learning Assisted by an Entangled Sensor Network. Physical Review X, 2019, 9,	2.8	29
28	Wave-Function Engineering for Spectrally Uncorrelated Biphotons in the Telecommunication Band Based on a Machine-Learning Framework. Physical Review Applied, 2019, 12, .	1.5	18
29	Covert sensing using floodlight illumination. Physical Review A, 2019, 99, .	1.0	12
30	Repeater-enhanced distributed quantum sensing based on continuous-variable multipartite entanglement. Physical Review A, 2019, 99, .	1.0	21
31	High Dimensional Quantum Key Distribution with Biphoton Frequency Combs through Energy-Time Entanglement. , 2019, , .		3
32	Large-alphabet encoding for higher-rate quantum key distribution. Optics Express, 2019, 27, 17539.	1.7	17
33	Entanglement-Enhanced Physical-Layer Classifier Using Supervised Machine Learning. , 2019, , .		1
34	Entanglement-Based Distributed Quantum Sensing Enhanced by Quantum Relays. , 2019, , .		0
35	Indistinguishable Photon Source in the 1550-nm Band Optimized by Machine Learning. , 2019, , .		0
36	Quantum key distribution using basis encoding of Gaussian-modulated coherent states. Physical Review A, 2018, 97, .	1.0	23

ZHESHEN ZHANG

#	Article	IF	CITATIONS
37	Distributed quantum sensing using continuous-variable multipartite entanglement. Physical Review A, 2018, 97, .	1.0	130
38	Experimental quantum key distribution at 1.3 gigabit-per-second secret-key rate over a 10 dB loss channel. Quantum Science and Technology, 2018, 3, 025007.	2.6	25
39	Security-proof framework for two-way Gaussian quantum-key-distribution protocols. Physical Review A, 2018, 98, .	1.0	13
40	High-order encoding schemes for floodlight quantum key distribution. Physical Review A, 2018, 98, .	1.0	7
41	Experimental Quantum Key Distribution at 1.3 Gbit/s Secret-Key Rate over a 10-dB-Loss Channel. , 2018, , .		2
42	Distributed Quantum Sensing Using Continuous-Variable Multipartite Entanglement. , 2018, , .		0
43	Optimum Mixed-State Discrimination for Noisy Entanglement-Enhanced Sensing. Physical Review Letters, 2017, 118, 040801.	2.9	139
44	Entanglement-enhanced lidars for simultaneous range and velocity measurements. Physical Review A, 2017, 96, .	1.0	45
45	Quantum illumination for enhanced detection of Rayleigh-fading targets. Physical Review A, 2017, 96, .	1.0	36
46	Floodlight quantum key distribution: Demonstrating a framework for high-rate secure communication. Physical Review A, 2017, 95, .	1.0	19
47	Efficient generation and characterization of spectrally factorable biphotons. Optics Express, 2017, 25, 7300.	1.7	55
48	Entanglement-enhanced Neyman–Pearson target detection using quantum illumination. Journal of the Optical Society of America B: Optical Physics, 2017, 34, 1567.	0.9	48
49	Large-Alphabet Encoding Schemes for Floodlight Quantum Key Distribution. , 2017, , .		1
50	Generation and characterization of factorable biphotons with 99% spectral purity. , 2017, , .		0
51	Optimum Mixed-State Discrimination for Noisy Entanglement-Enhanced Sensing. , 2017, , .		1
52	Floodlight Quantum Key Distribution. , 2016, , .		2
53	Floodlight quantum key distribution: A practical route to gigabit-per-second secret-key rates. Physical Review A, 2016, 94, .	1.0	44
54	High-rate large-alphabet quantum key distribution over deployed telecom fiber. , 2016, , .		5

#	Article	IF	CITATIONS
55	Demonstration of Loss-Tolerant Quantum Key Distribution. , 2016, , .		Ο
56	Floodlight Quantum Key Distribution. , 2016, , .		0
57	Finite-key analysis of high-dimensional time–energy entanglement-based quantum key distribution. Quantum Information Processing, 2015, 14, 1005-1015.	1.0	13
58	Practical high-dimensional quantum key distribution with decoy states. Physical Review A, 2015, 91, .	1.0	31
59	Photon-efficient quantum key distribution using time–energy entanglement with high-dimensional encoding. New Journal of Physics, 2015, 17, 022002.	1.2	150
60	Entanglement-Enhanced Sensing in a Lossy and Noisy Environment. Physical Review Letters, 2015, 114, 110506.	2.9	193
61	Experimental Demonstration of Quantum Sensing in the Presence of Quantum Decoherence. , 2015, , .		1
62	Practical High-Dimensional Quantum Key Distribution with Decoy States. , 2015, , .		1
63	Entanglement-based quantum communication secured by nonlocal dispersion cancellation. Physical Review A, 2014, 90, .	1.0	53
64	Unconditional Security of Time-Energy Entanglement Quantum Key Distribution Using Dual-Basis Interferometry. Physical Review Letters, 2014, 112, 120506.	2.9	78
65	Secure communication via quantum illumination. Quantum Information Processing, 2014, 13, 2171-2193.	1.0	31
66	High-dimensional time-energy entanglement-based quantum key distribution using dispersive optics. , 2014, , .		0
67	Quantum Communication Using Time-energy Entangled Photons. , 2014, , .		Ο
68	Photon-Efficient High-Dimensional Quantum Key Distribution. , 2014, , .		1
69	High-dimensional quantum key distribution using dispersive optics. Physical Review A, 2013, 87, .	1.0	136
70	Entanglement's Benefit Survives an Entanglement-Breaking Channel. Physical Review Letters, 2013, 111, 010501.	2.9	114
71	Experimental Demonstration of Secure Communication based on Quantum Illumination. , 2013, ,		0
72	Full-band quantum-dynamical theory of saturation and four-wave mixing in graphene. Optics Letters, 2011, 36, 4569.	1.7	35

ZHESHEN ZHANG

#	Article	IF	CITATIONS
73	The quantum noise of guided wave acoustic Brillouin scattering with applications to continuous-variable quantum key distribution. Journal of Modern Optics, 2011, 58, 988-993.	0.6	1
74	A quantum theory of four-wave mixing in graphene. , 2011, , .		0
75	Use of discrete modulation and a continuous wave local oscillator in a 24 km continuous variable quantum key distribution system. , 2010, , .		0
76	A provably secure streamcipher based on a high speed quantum random number generator. , 2010, , .		0
77	Security of a discretely signaled continuous variable quantum key distribution protocol for high rate systems. Optics Express, 2009, 17, 12090.	1.7	12
78	A 24 km fiber-based discretely signaled continuous variable quantum key distribution system. Optics Express, 2009, 17, 24244.	1.7	69
79	Security of a Discretely Signaled Continuous Variable QKD Protocol against Collective Attacks. , 2008, , .		0
80	Quantum identity authentication based on ping-pong technique for photons. Physics Letters, Section A: General, Atomic and Solid State Physics, 2006, 356, 199-205.	0.9	71