
David A Scott

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6543528/publications.pdf Version: 2024-02-01

ΠΑΥΙΟ Δ SCOTT

#	Article	IF	CITATIONS
1	Succinate dehydrogenase/complex II is critical for metabolic and epigenetic regulation of T cell proliferation and inflammation. Science Immunology, 2022, 7, eabm8161.	11.9	23
2	A stromal Integrated Stress Response activates perivascular cancer-associated fibroblasts to drive angiogenesis and tumour progression. Nature Cell Biology, 2022, 24, 940-953.	10.3	52
3	Culturable bacteria in the entire acne lesion and short-chain fatty acid metabolites of Cutibacterium acnes and Staphylococcus epidermidis isolates. Biochemical and Biophysical Research Communications, 2022, 622, 45-49.	2.1	7
4	Analysis of Melanoma Cell Glutamine Metabolism by Stable Isotope Tracing and Gas Chromatography-Mass Spectrometry. Methods in Molecular Biology, 2021, 2265, 91-110.	0.9	4
5	MAPK signaling regulates câ€MYC for melanoma cell adaptation to asparagine restriction. EMBO Reports, 2021, 22, e51436.	4.5	15
6	Identification and Characterization of IMD-0354 as a Glutamine Carrier Protein Inhibitor in Melanoma. Molecular Cancer Therapeutics, 2021, 20, 816-832.	4.1	16
7	Macropinocytosis in Cancer-Associated Fibroblasts Is Dependent on CaMKK2/ARHGEF2 Signaling and Functions to Support Tumor and Stromal Cell Fitness. Cancer Discovery, 2021, 11, 1808-1825.	9.4	53
8	The deacylase SIRT5 supports melanoma viability by influencing chromatin dynamics. Journal of Clinical Investigation, 2021, 131, .	8.2	23
9	Experiments from unfinished Registered Reports in the Reproducibility Project: Cancer Biology. ELife, 2021, 10, .	6.0	16
10	Lineage-Restricted Regulation of SCD and Fatty Acid Saturation by MITF Controls Melanoma Phenotypic Plasticity. Molecular Cell, 2020, 77, 120-137.e9.	9.7	87
11	Dietary Emulsifier Sodium Stearoyl Lactylate Alters Gut Microbiota in vitro and Inhibits Bacterial Butyrate Producers. Frontiers in Microbiology, 2020, 11, 892.	3.5	23
12	4-1BBL Regulates the Polarization of Macrophages, and Inhibition of 4-1BBL Signaling Alleviates Imiquimod-Induced Psoriasis. Journal of Immunology, 2020, 204, 1892-1903.	0.8	10
13	An acidic residue buried in the dimer interface of isocitrate dehydrogenase 1 (IDH1) helps regulate catalysis and pH sensitivity. Biochemical Journal, 2020, 477, 2999-3018.	3.7	8
14	The Catalytic Features of IDH1 Mutations Can Drive Neomorphic Activity, Phenotype Severity, and Inhibitor Binding. FASEB Journal, 2020, 34, 1-1.	0.5	0
15	A novel small molecule that kills a subset of MLL-rearranged leukemia cells by inducing mitochondrial dysfunction. Oncogene, 2019, 38, 3824-3842.	5.9	17
16	Increased Serine and One-Carbon Pathway Metabolism by PKCλ/ι Deficiency Promotes Neuroendocrine Prostate Cancer. Cancer Cell, 2019, 35, 385-400.e9.	16.8	128
17	Translational reprogramming marks adaptation to asparagine restriction in cancer. Nature Cell Biology, 2019, 21, 1590-1603.	10.3	61
18	Inhibitor potency varies widely among tumor-relevant human isocitrate dehydrogenase 1 mutants. Biochemical Journal, 2018, 475, 3221-3238.	3.7	10

DAVID A SCOTT

#	Article	IF	CITATIONS
19	Targeting the Warburg effect via <scp>LDHA</scp> inhibition engages <scp>ATF</scp> 4 signaling for cancer cell survival. EMBO Journal, 2018, 37, .	7.8	103
20	Prediction of enzymatic pathways by integrative pathway mapping. ELife, 2018, 7, .	6.0	30
21	Interaction of the cryptic fragment of myelin basic protein with mitochondrial voltage-dependent anion-selective channel-1 affects cell energy metabolism. Biochemical Journal, 2018, 475, 2355-2376.	3.7	3
22	Molecular mechanisms of isocitrate dehydrogenase 1 (IDH1) mutations identified in tumors: The role of size and hydrophobicity at residue 132 on catalytic efficiency. Journal of Biological Chemistry, 2017, 292, 7971-7983.	3.4	40
23	Hepatic GALE Regulates Whole-Body Glucose Homeostasis by Modulating <i>Tff3</i> Expression. Diabetes, 2017, 66, 2789-2799.	0.6	24
24	Registered report: IDH mutation impairs histone demethylation and results in a block to cell differentiation. ELife, 2016, 5, e10860.	6.0	10
25	Regulation of Glutamine Carrier Proteins by RNF5 Determines Breast Cancer Response to ER Stress-Inducing Chemotherapies. Cancer Cell, 2015, 27, 354-369.	16.8	177
26	Suppression of PGC-1α Is Critical for Reprogramming Oxidative Metabolism in Renal Cell Carcinoma. Cell Reports, 2015, 12, 116-127.	6.4	140
27	Arginylation regulates purine nucleotide biosynthesis by enhancing the activity of phosphoribosyl pyrophosphate synthase. Nature Communications, 2015, 6, 7517.	12.8	36
28	Glutamate and asparagine cataplerosis underlie glutamine addiction in melanoma. Oncotarget, 2015, 6, 7379-7389.	1.8	68
29	The Metabolic Origins of Mannose in Glycoproteins. Journal of Biological Chemistry, 2014, 289, 6751-6761.	3.4	62
30	Glutamineâ€fueled mitochondrial metabolism is decoupled from glycolysis in melanoma. Pigment Cell and Melanoma Research, 2012, 25, 732-739.	3.3	93
31	Reverse TCA cycle flux through isocitrate dehydrogenases 1 and 2 is required for lipogenesis in hypoxic melanoma cells. Pigment Cell and Melanoma Research, 2012, 25, 375-383.	3.3	153
32	Comparative Metabolic Flux Profiling of Melanoma Cell Lines. Journal of Biological Chemistry, 2011, 286, 42626-42634.	3.4	274