Uwe Rossow

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6543467/publications.pdf

Version: 2024-02-01

153	2,780	27 h-index	46
papers	citations		g-index
154	154	154	2138
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Low-temperature internal quantum efficiency of GalnN/GaN quantum wells under steady-state conditions. Semiconductor Science and Technology, 2022, 37, 035017.	1.0	6
2	Ultrafast Terahertz Nanoseismology of GalnN/GaN Multiple Quantum Wells. Advanced Optical Materials, 2021, 9, 2100258.	3.6	8
3	Unity quantum efficiency in III-nitride quantum wells at low temperature: Experimental verification by time-resolved photoluminescence. Applied Physics Letters, 2021, 119, .	1.5	19
4	Pyramid Formation by Etching of InxGa1â^'xN/GaN Quantum Well Structures Grown on Nâ€face GaN for Nanooptical Light Emitters. Physica Status Solidi (B): Basic Research, 2021, 258, 2100085.	0.7	1
5	Reduced radiative emission for wide nonpolar III-nitride quantum wells. Physical Review B, 2019, 99, .	1.1	2
6	Microscopic analysis of interface composition dynamics in m-plane AllnN. Japanese Journal of Applied Physics, 2019, 58, SC1008.	0.8	2
7	Control of optical polarization properties by manipulation of anisotropic strain in nonpolar m-plane GalnN/GaN quantum wells. Applied Physics Letters, 2019, 114, .	1.5	6
8	Reduced nonradiative recombination in semipolar green-emitting III-N quantum wells with strain-reducing AllnN buffer layers. Applied Physics Letters, 2019, 115, 202103.	1.5	6
9	A Brief History of Ellipsometry. Physica Status Solidi (B): Basic Research, 2019, 256, 1800307.	0.7	3
10	Internal quantum efficiency of nitride light emitters: a critical perspective. , 2018, , .		7
11	Indium incorporation into InGaN: The role of the adlayer. Journal of Crystal Growth, 2017, 464, 112-118.	0.7	4
12	Radiative recombination in polar, non-polar, and semi-polar III-nitride quantum wells. Proceedings of SPIE, $2017, \ldots$	0.8	4
13	Strain dependence of In incorporation in m-oriented GalnN/GaN multi quantum well structures. Applied Physics Letters, 2016, 108, 102105.	1.5	7
14	Growth kinetics and island evolution during double-pulsed molecular beam epitaxy of InN. Journal of Applied Physics, 2016, 119, 235308.	1.1	2
15	Radiative and nonradiative recombination mechanisms in nonpolar and semipolar GalnN/GaN quantum wells. Physica Status Solidi (B): Basic Research, 2016, 253, 133-139.	0.7	17
16	Non†and semipolar AllnN oneâ€dimensionally latticeâ€matched to GaN for realization of relaxed buffer layers for strain engineering in optically active GaNâ€based devices. Physica Status Solidi (B): Basic Research, 2016, 253, 84-92.	0.7	7
17	Efficient formation of excitons in a dense electron-hole plasma at room temperature. Physical Review B, 2015, 92, .	1.1	31
18	Efficiency droop in nitride LEDs revisited: impact of excitonic recombination processes., 2015,,.		2

#	Article	IF	CITATIONS
19	Indium incorporation processes investigated by pulsed and continuous growth of ultrathin InGaN quantum wells. Journal of Crystal Growth, 2015, 414, 49-55.	0.7	6
20	S shape in polar GalnN/GaN quantum wells: Piezoelectric-field-induced blue shift driven by onset of nonradiative recombination. Physical Review B, 2014, 90, .	1.1	35
21	Lattice-matched AllnN in the initial stage of growth. Applied Physics Letters, 2014, 104, .	1.5	14
22	Intentional anisotropic strain relaxation in ($112 \hat{A}^-2$) oriented Allâ^'xInxN one-dimensionally lattice matched to GaN. Applied Physics Letters, 2014, 105, 122109.	1.5	5
23	Double-Pulsed Growth of InN by RF-MBE. Journal of Electronic Materials, 2013, 42, 849-853.	1.0	5
24	Atomic scale investigations of ultra-thin GalnN/GaN quantum wells with high indium content. Applied Physics Letters, 2013, 102, 102110.	1.5	21
25	Optimizing the growth process of the active zone in GaN based laser structures for the long wavelength region. Journal of Crystal Growth, 2013, 370, 105-108.	0.7	2
26	Measurement of the indium concentration in high indium content InGaN layers by scanning transmission electron microscopy and atom probe tomography. Applied Physics Letters, 2013, 102, 132112.	1.5	36
27	Nonradiative recombination due to point defects in GalnN/GaN quantum wells induced by Ar implantation. Proceedings of SPIE, 2013, , .	0.8	6
28	Strong enhancement of Eu+3 luminescence in europium-implanted GaN by Si and Mg codoping. Applied Physics Letters, 2013, 102, .	1.5	19
29	Transient THz photoconductivity in dynamically screened InGaN/GaN quantum wells. , 2013, , .		0
30	Strain-induced defects as nonradiative recombination centers in green-emitting GalnN/GaN quantum well structures. Applied Physics Letters, 2013, 103, .	1.5	69
31	Measuring composition in InGaN from HAADF-STEM images and studying the temperature dependence of Z-contrast. Journal of Physics: Conference Series, 2013, 471, 012009.	0.3	1
32	Room temperature excitonic recombination in GalnN/GaN quantum wells. Applied Physics Letters, 2013, 103, 202106.	1.5	45
33	Large optical polarization anisotropy due to anisotropic in-plane strain in m-plane GalnN quantum well structures grown on m-plane 6H-SiC. Applied Physics Letters, 2012, 100, .	1.5	18
34	Analysis of indium incorporation in non- and semipolar GalnN QW structures: comparing x-ray diffraction and optical properties. Semiconductor Science and Technology, 2012, 27, 024013.	1.0	18
35	Dielectric function and bowing parameters of InGaN alloys. Physica Status Solidi (B): Basic Research, 2012, 249, 485-488.	0.7	31
36	Auger recombination in GalnN/GaN quantum well laser structures. Applied Physics Letters, 2011, 99, .	1.5	57

#	Article	IF	Citations
37	Imposed layer-by-layer growth of ZnO on GaN/sapphire substrates using pulsed laser interval deposition. Thin Solid Films, 2011, 519, 7683-7685.	0.8	3
38	Indium incorporation in GalnN/GaN quantum well structures on polar and nonpolar surfaces. Physica Status Solidi (B): Basic Research, 2011, 248, 600-604.	0.7	15
39	Xâ€ray composition analysis of nonpolar GalnN/GaN multiple quantum well structures. Physica Status Solidi (B): Basic Research, 2011, 248, 616-621.	0.7	17
40	Spontaneous polarization field in polar and nonpolar GalnN/GaN quantum well structures. Physica Status Solidi (B): Basic Research, 2011, 248, 627-631.	0.7	6
41	Scanning nearâ€field luminescence microscopy of green light emitting GalnN/GaN quantum wells grown on câ€plane sapphire and on câ€plane bulk GaN. Physica Status Solidi C: Current Topics in Solid State Physics, 2011, 8, 1556-1559.	0.8	1
42	Origin of the "green gap― Increasing nonradiative recombination in indium―ich GalnN/GaN quantum well structures. Physica Status Solidi C: Current Topics in Solid State Physics, 2011, 8, 2170-2172.	0.8	96
43	Growth of the active zone in nitride based long wavelength laser structures. Journal of Crystal Growth, 2011, 315, 250-253.	0.7	3
44	Growth and characterization of InGaN by RF-MBE. Journal of Crystal Growth, 2011, 323, 72-75.	0.7	29
45	Highly efficient light emission from stacking faults intersecting nonpolar GaInN quantum wells. Applied Physics Letters, 2011, 99, .	1.5	25
46	Correlated terahertz acoustic and electromagnetic emission in dynamically screened InGaN/GaN quantum wells. Physical Review B, 2011, 84, .	1.1	29
47	Effects of spontaneous polarization on GalnN/GaN quantum well structures. Journal of Applied Physics, 2011, 109, 123710.	1.1	10
48	Recombination of free excitons in polar and nonpolar nitride quantum wells. Journal of Physics: Conference Series, 2010, 210, 012056.	0.3	0
49	Dislocation screening and strongly increased internal quantum efficiency in heteroepitaxial <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mtext>GaN</mml:mtext><mml:mo>/</mml:mo><mml:msub><mml:mrow> Physical Review B. 2009. 79</mml:mrow></mml:msub></mml:mrow></mml:math>	<mm:mte< td=""><td>xt>81</td></mm:mte<>	xt>81
50	Towards green lasing: ingredients for a green laser diode based on GaInN. Physica Status Solidi C: Current Topics in Solid State Physics, 2009, 6, S792.	0.8	3
51	Mechanism of thermal degradation in GalnN/GaN quantum wells. Physica Status Solidi C: Current Topics in Solid State Physics, 2009, 6, S594-S597.	0.8	9
52	Investigations of deep lying wide bandgap GaN and InGaN quantum well structures: A challenge for ellipsometric methods. Physica Status Solidi C: Current Topics in Solid State Physics, 2008, 5, 1378-1381.	0.8	0
53	High quality, high efficiency and ultrahigh In-content InGaN QWs – the problem of thermal stability. Physica Status Solidi C: Current Topics in Solid State Physics, 2008, 5, 1662-1664.	0.8	10
54	Comparison of GalnN laser structures grown on different substrates. Physica Status Solidi C: Current Topics in Solid State Physics, 2008, 5, 2277-2279.	0.8	2

#	Article	IF	Citations
55	Growth of QW structures with high indium concentration on -plane and -plane surfaces by MOVPE. Journal of Crystal Growth, 2008, 310, 4987-4991 Emission and recombination characteristics of amml:math	0.7	6
56	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mrow><mml:msub><mml:mi mathvariant="normal">Ga</mml:mi><mml:mrow><mml:mn>1</mml:mn><mml:mo>â^'</mml:mo><mml:mi>xIn</mml:mi><mml:mi><<mml:mi></mml:mi><mml:mi< td=""><td>nml:mi>1.1</td><td>mml:mrow></td></mml:mi<></mml:mi></mml:mrow></mml:msub></mml:mrow>	nml:mi>1.1	mml:mrow>
57	mathvariant="normal">Ga <mml:mi mathvariant="normal">N</mml:mi> <td>1.5</td> <td>8</td>	1.5	8
58	Anti-localization suppresses non-radiative recombination in GalnN/GaN quantum wells. Philosophical Magazine, 2007, 87, 2041-2065.	0.7	21
59	Aluminum incorporation in -layers and implications for growth optimization. Journal of Crystal Growth, 2007, 298, 361-366.	0.7	2
60	Optimization scheme for the quantum efficiency of GalnN-based green-light-emitting diodes. Applied Physics Letters, 2006, 88, 071105.	1.5	59
61	Critical points of the bandstructure of AlN/GaN superlattices investigated by spectroscopic ellipsometry and modulation spectroscopy. Physica Status Solidi C: Current Topics in Solid State Physics, 2006, 3, 2009-2013.	0.8	2
62	Optimizing the internal quantum efficiency of GalnN SQW structures for green light emitters. Physica Status Solidi C: Current Topics in Solid State Physics, 2006, 3, 1966-1969.	0.8	34
63	Vertically Increasing Well Thickness and In Content in GalnN MQW's due to V-shaped Pits. Materials Research Society Symposia Proceedings, 2006, 955, 1.	0.1	1
64	Experimental Analysis of the Spontaneous Polarization Field in GaN by UHV-cathodoluminescence. Materials Research Society Symposia Proceedings, 2006, 955, 1.	0.1	1
65	Large internal quantum efficiency of In-free UV-emitting GaNâ^•AlGaN quantum-well structures. Applied Physics Letters, 2006, 88, 191108.	1.5	15
66	Specific emission characteristics of high-quantum-efficiency GalnN/GaN heterostructures. Physica Status Solidi C: Current Topics in Solid State Physics, 2005, 2, 2712-2715.	0.8	0
67	Reflectance difference spectroscopy RDS/RAS combined with spectroscopic ellipsometry for a quantitative analysis of optically anisotropic materials. Physica Status Solidi (B): Basic Research, 2005, 242, 2617-2626.	0.7	7
68	Dielectric function and critical points of the band structure for AlGaN alloys. Physica Status Solidi (B): Basic Research, 2005, 242, 2610-2616.	0.7	38
69	Localized high-energy emissions from the vicinity of defects in high-efficiencyGaxIn1â^'xNâ^•GaNquantum wells. Physical Review B, 2005, 72, .	1.1	37
70	Determination of the polarization discontinuity at the AlGaNâ ⁻ GaN interface by electroreflectance spectroscopy. Applied Physics Letters, 2005, 86, 181912.	1.5	26
71	Suppression of Nonradiative Recombination by V-Shaped Pits inGaInN/GaNQuantum Wells Produces a Large Increase in the Light Emission Efficiency. Physical Review Letters, 2005, 95, 127402.	2.9	360
72	Recombination Mechanism in Short-Wavelength GaN/AlGaN Quantum Wells. Materials Research Society Symposia Proceedings, 2004, 831, 558.	0.1	1

#	Article	IF	Citations
73	Towards understanding the emission efficiency of nitride quantum wells. Physica Status Solidi A, 2004, 201, 2808-2813.	1.7	70
74	Narrow high-energy emission lines in high-resolution near-field spectroscopy on GalnN/GaN quantum wells. Physica Status Solidi C: Current Topics in Solid State Physics, 2004, 1, 2520-2523.	0.8	8
75	Growth of AlxGa1â^'xN-layers on planar and patterned substrates. Journal of Crystal Growth, 2004, 272, 506-514.	0.7	5
76	Ultrafast polarization dynamics in optically excited biased quantum wells., 2004, 5354, 151.		0
77	Influence of low-temperature interlayers on strain and defect density of epitaxial GaN layers. Journal of Crystal Growth, 2003, 248, 528-532.	0.7	6
78	High resolution near-field spectroscopy investigation of tilted InGaN quantum wells. Physica Status Solidi C: Current Topics in Solid State Physics, 2003, 0, 2674-2677.	0.8	3
79	Growth of AlxGa1â^xN and GaN on photo-electrochemically patterned SiC substrates. Physica Status Solidi C: Current Topics in Solid State Physics, 2003, 0, 2072-2076.	0.8	3
80	Analysis of quantum efficiency of high brightness GalnN/GaN quantum wells. Physica Status Solidi C: Current Topics in Solid State Physics, 2003, 0, 2202-2205.	0.8	16
81	Radiative and Nonradiative Recombination Times in Optically Excited GalnN/GaN Quantum Wells. Physica Status Solidi C: Current Topics in Solid State Physics, 2003, 0, 324-328.	0.8	10
82	Correlation between Emission Spectra and Defect Position in InGaN-Based Light Emitting Devices. Physica Status Solidi C: Current Topics in Solid State Physics, 2003, 0, 537-541.	0.8	2
83	Optimization of GaN/AlGaN Quantum Wells for Ultraviolet Emitters. Materials Research Society Symposia Proceedings, 2003, 798, 430.	0.1	0
84	Ultrafast polarization dynamics in biased quantum wells under strong femtosecond optical excitation. Physical Review B, 2003, 68, .	1.1	56
85	Composition dependence of polarization fields in GalnN/GaN quantum wells. Applied Physics Letters, 2003, 83, 1169-1171.	1.5	97
86	Lateral growth of AlxGa1–xN and GaN on SiC substrates patterned by photo-electrochemical etching. Materials Research Society Symposia Proceedings, 2002, 743, L1.9.1.	0.1	1
87	Optical Characterization of Porous Materials. Physica Status Solidi A, 2001, 184, 51-78.	1.7	19
88	Optical Anisotropy of Organic Layers Deposited on Semiconductor Surfaces. Physica Status Solidi A, 2001, 188, 1307-1317.	1.7	14
89	Optical anisotropy of organic layers on GaAs(001). Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2001, 19, 1658.	1.6	14
90	Characterization of AlxGa1?xN-Compound Layers by Reflectance Difference Spectroscopy. Physica Status Solidi A, 2000, 177, 157-164.	1.7	4

#	Article	IF	CITATIONS
91	Coherence Effects and Time Dependences of the Optical Response of Surfaces and Interfaces of Optically Absorbing Materials. Physica Status Solidi (B): Basic Research, 2000, 220, 709-715.	0.7	7
92	Reflectance anisotropy spectroscopy of the growth of perylene-3,4,9,10-tetracarboxylic dianhydride on chalcogen passivated GaAs(001) surfaces. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2000, 18, 2077.	1.6	25
93	Photon-induced localization in optically absorbing materials. Physics Letters, Section A: General, Atomic and Solid State Physics, 1999, 253, 93-97.	0.9	14
94	Linear Optical Properties of Si Surfaces and Nanostructures. Physica Status Solidi (B): Basic Research, 1999, 215, 725-729.	0.7	5
95	Reflectance Difference Spectroscopy Characterization of AlxGa1â€"xN-Compound Layers. Physica Status Solidi (B): Basic Research, 1999, 216, 215-220.	0.7	3
96	3C SiC(001) surface structure studied by angular resolved photoelectron spectroscopy and reflectance anisotropy spectroscopy. Diamond and Related Materials, 1999, 8, 331-334.	1.8	0
97	Depolarization/mixed polarization corrections of ellipsometry spectra. Thin Solid Films, 1998, 313-314, 97-101.	0.8	30
98	Systematic differences among nominal reference dielectric function spectra for crystalline Si as determined by spectroscopic ellipsometry. Thin Solid Films, 1998, 313-314, 161-166.	0.8	13
99	Interpretation of critical point energy shifts in crystalline Si by near-surface localization of excited electronic states. Thin Solid Films, 1998, 313-314, 557-560.	0.8	7
100	Many-Body and Correlation Effects in Surface and Interface Spectra of Optically Absorbing Materials. Physica Status Solidi A, 1998, 170, 199-210.	1.7	3
101	Lineshapes of surface induced optical anisotropy spectra measured by RDS/RAS. Applied Surface Science, 1998, 123-124, 237-242.	3.1	26
102	Photon-induced localization and final-state correlation effects in optically absorbing materials. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1998, 16, 2367.	1.6	14
103	Interpretation of reflectance anisotropy spectroscopy spectra of ZnSe(001) grown on GaAs(001) in terms of bulk, interface, and surface contributions. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1998, 16, 2350.	1.6	2
104	Reflectance difference spectroscopy spectra of clean (3×2), (2×1), and c(2×2) 3C-SiC(001) surfaces: New evidence for surface state contributions to optical anisotropy spectra. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1998, 16, 2355.	rw 1.6	15
105	Hydrogen On Semiconductor Surfaces. Materials Research Society Symposia Proceedings, 1998, 513, 3.	0.1	3
106	Evidence of near-surface localization of excited electronic states in crystalline Si. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1997, 15, 1196.	1.6	25
107	Surface and interface effects on ellipsometric spectra of crystalline Si. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1997, 15, 1205.	1.6	25
108	In situ photoemission and reflectance anisotropy spectroscopy studies of CdS grown on InP(001). Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1997, 15, 1260.	1.6	8

#	Article	IF	CITATIONS
109	Molecular layer epitaxy by real-time optical process monitoring. Applied Surface Science, 1997, 112, 38-47.	3.1	14
110	Depth inhomogeneity of porous silicon layers. Journal of Applied Physics, 1996, 80, 2990-2993.	1.1	48
111	Multilevel Approaches Toward Monitoring and Control of Semiconductor Epitaxy. Materials Research Society Symposia Proceedings, 1996, 448, 451.	0.1	1
112	In-Plane Optical Anisotropies of AlxGa1-xN films in their Regions of Transparency. Materials Research Society Symposia Proceedings, 1996, 449, 835.	0.1	2
113	Investigation of different oxidation processes for porous silicon studied by spectroscopic ellipsometry. Thin Solid Films, 1996, 276, 36-39.	0.8	27
114	Real-time optical monitoring of heteroepitaxial growth processes on Si under pulsed chemical beam epitaxy conditions. Applied Surface Science, 1996, 102, 47-51.	3.1	6
115	Interpretation of the dielectric function of porous silicon layers. Applied Surface Science, 1996, 102, 413-416.	3.1	10
116	Real-time optical monitoring of GaxIn1 \hat{a} xP and GaP heteroepitaxy on Si under pulsed chemical beam conditions. Journal of Crystal Growth, 1996, 164, 34-39.	0.7	11
117	Hydrogenated and oxidized vicinal Si(001) surfaces investigated by reflectance-difference spectroscopy. Applied Surface Science, 1996, 104-105, 137-140.	3.1	6
118	Porous silicon layers as a model system for nanostructures. Applied Surface Science, 1996, 104-105, 552-556.	3.1	8
119	Surface-induced optical anisotropy of oxidized, clean, and hydrogenated vicinal Si(001) surfaces. Applied Surface Science, 1996, 107, 35-41.	3.1	49
120	Interpretation of surface-induced optical anisotropy of clean, hydrogenated, and oxidized vicinal silicon surfaces investigated by reflectance-difference spectroscopy. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1996, 14, 3070.	1.6	40
121	Optical investigations of surface processes in GaP heteroepitaxy on silicon under pulsed chemical beam epitaxy conditions. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1996, 14, 3040.	1.6	9
122	Analysis of Strain in GaN on Al ₂ O ₃ and 6H-SiC: Near-Bandedge Phenomena. Materials Research Society Symposia Proceedings, 1995, 395, 405.	0.1	7
123	Towards a Microscopic Interpretation of the Dielectric Function of Porous Silicon. Materials Research Society Symposia Proceedings, 1995, 405, 209.	0.1	2
124	Real-time Optical Monitoring of GaxIn1â°'xP/GaP Heterostructures on Silicon. Materials Research Society Symposia Proceedings, 1995, 406, 127.	0.1	0
125	In-Situ and Ex-Situ Studies of Silicon Interfaces and Nanostructures by Ellipsometry and Rds. Materials Research Society Symposia Proceedings, 1995, 406, 371.	0.1	1
126	Real-time monitoring of heteroepitaxial growth processes on the silicon(001) surface by p-polarized reflectance spectroscopy. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1995, 35, 472-478.	1.7	22

#	Article	IF	CITATIONS
127	Influence of the formation conditions on the microstructure of porous silicon layers studied by spectroscopic ellipsometry. Thin Solid Films, 1995, 255, 5-8.	0.8	13
128	Real-time optical monitoring of epitaxial growth: Pulsed chemical beam epitaxy of GaP and InP homoepitaxy and heteroepitaxy on Si. Journal of Electronic Materials, 1995, 24, 1571-1576.	1.0	26
129	Structural and optical properties of nitrided silicon oxide layers rapid thermally grown in a pure N2O ambient. Journal of Non-Crystalline Solids, 1995, 187, 380-384.	1.5	1
130	Surface-Induced Optical Anisotropies of Single-Domain $(2\tilde{A}-1)$ Reconstructed (001) Si and Ge Surfaces. Physical Review Letters, 1995, 74, 3431-3434.	2.9	114
131	Spectroscopic Ellipsometry. , 1995, , 39-76.		0
132	Defect reduction in GaAs and InP grown on planar Si(111) and on patterned Si(001) substrates. Journal of Crystal Growth, 1994, 145, 314-320.	0.7	39
133	Phase transition from the cubic to the hexagonal modification in thin CdS films on InP(110). Advanced Materials for Optics and Electronics, 1994, 3, 11-14.	0.5	32
134	Growth mode and interface formation of Sb on GaAs(100). Surface Science, 1994, 307-309, 597-602.	0.8	6
135	Contribution of the Nanocrystallites and Their Interfaces to the Optical Response of Porous Silicon Layers. Materials Research Society Symposia Proceedings, 1994, 358, 429.	0.1	2
136	Growth mode of ultrathin Sb layers on Si studied by spectroscopic ellipsometry and Raman scattering. Applied Surface Science, 1993, 63, 35-39.	3.1	26
137	The influence of nanocrystals on the dielectric function of porous silicon. Applied Surface Science, 1993, 63, 57-61.	3.1	15
138	Thermal desorption of amorphous arsenic caps from GaAs(100) monitored by reflection anisotropy spectroscopy. Applied Surface Science, 1993, 63, 106-110.	3.1	41
139	Hydrogen-terminated Si(100) surfaces investigated by reflectance anisotropy spectroscopy. Thin Solid Films, 1993, 233, 19-23.	0.8	20
140	Thin epitaxial films of wide gap II–VI compounds studied by spectroscopic ellipsometry. Thin Solid Films, 1993, 233, 176-179.	0.8	23
141	Ellipsometric characterization of InP-based quantum well structures. Thin Solid Films, 1993, 233, 180-184.	0.8	8
142	Characterisation of porous silicon layers by spectroscopic ellipsometry. Journal of Luminescence, 1993, 57, 205-209.	1.5	23
143	In situ optical characterisation with monolayer sensitivity: the As-terminated Si(111) surface. Surface Science, 1993, 287-288, 718-721.	0.8	14
144	The influence of nanocrystals on the dielectric function of porous silicon. , 1993, , 57-61.		0

#	Article	IF	CITATIONS
145	Growth mode of ultrathin Sb layers on Si studied by spectroscopic ellipsometry and Raman scattering., 1993,, 35-39.		0
146	In situ Raman studies during the epitaxial growth of ZnSe layers on GaAs(110). Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1992, 10, 2066.	1.6	17
147	Degradation of Porous Si Layers Caused by Thermal Treatment. Materials Research Society Symposia Proceedings, 1992, 283, 281.	0.1	7
148	Optical characterization of porous silicon layers formed on heavily p-doped substrates. Applied Surface Science, 1992, 56-58, 6-10.	3.1	13
149	In situ monitoring of heterostructure growth by optical spectroscopies: CdS on InP(110). Applied Surface Science, 1992, 56-58, 684-690.	3.1	18
150	Vibrational properties of arsenic on Si(111). Surface Science, 1991, 251-252, 556-560.	0.8	22
151	Assessment of Surface Damage of Gallium Arsenide due to Reactive Ion Etching. Materials Research Society Symposia Proceedings, 1990, 190, 255.	0.1	0
152	Quality of molecular-beam-epitaxy-grown GaAs on Si(100) studied by ellipsometry. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1990, 5, 309-312.	1.7	9
153	Plasma-etched and sputtered GaAs(100) surfaces investigated by ellipsometry and Raman spectroscopy. Journal of Physics Condensed Matter, 1989, 1, SB231-SB233.	0.7	4