
Ãgatha Oliveira-Giacomelli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6542916/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effects of Magnetite Nanoparticles and Static Magnetic Field on Neural Differentiation of Pluripotent Stem Cells. Stem Cell Reviews and Reports, 2022, 18, 1337-1354.	1.7	18
2	ATP and spontaneous calcium oscillations control neural stem cell fate determination in Huntington's disease: a novel approach for cell clock research. Molecular Psychiatry, 2021, 26, 2633-2650.	4.1	24
3	Hyperactivation of P2X7 receptors as a culprit of COVID-19 neuropathology. Molecular Psychiatry, 2021, 26, 1044-1059.	4.1	104
4	Antagonistic Roles of P2X7 and P2Y2 Receptors in Neurodegenerative Diseases. Frontiers in Pharmacology, 2021, 12, 659097.	1.6	4
5	Role of P2X7 Receptors in Immune Responses During Neurodegeneration. Frontiers in Cellular Neuroscience, 2021, 15, 662935.	1.8	24
6	Mesenchymal stem cellâ€glioblastoma interactions mediated via kinin receptors unveiled by cytometry. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2021, 99, 152-163.	1.1	6
7	Purinergic Receptors in Basal Ganglia Diseases: Shared Molecular Mechanisms between Huntington's and Parkinson's Disease. Neuroscience Bulletin, 2020, 36, 1299-1314.	1.5	24
8	The P2X7 Receptor: Central Hub of Brain Diseases. Frontiers in Molecular Neuroscience, 2020, 13, 124.	1.4	87
9	Restoring dopamine levels in Parkinson's disease: neuronal pathways, agonists and antiinflammatory agents. , 2020, , 479-493.		1
10	Midbrain Dopaminergic Neurons Differentiated from Human-Induced Pluripotent Stem Cells. Methods in Molecular Biology, 2019, 1919, 97-118.	0.4	18
11	P2Y6 and P2X7 Receptor Antagonism Exerts Neuroprotective/ Neuroregenerative Effects in an Animal Model of Parkinson's Disease. Frontiers in Cellular Neuroscience, 2019, 13, 476.	1.8	38
12	Purinergic receptors in neurogenic processes. Brain Research Bulletin, 2019, 151, 3-11.	1.4	22
13	Targeting Purinergic Signaling and Cell Therapy in Cardiovascular and Neurodegenerative Diseases. Advances in Experimental Medicine and Biology, 2019, 1201, 275-353.	0.8	8
14	Pathophysiology in the comorbidity of Bipolar Disorder and Alzheimer's Disease: pharmacological and stem cell approaches. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2018, 80, 34-53.	2.5	24
15	Purinergic Receptors in Neurological Diseases With Motor Symptoms: Targets for Therapy. Frontiers in Pharmacology, 2018, 9, 325.	1.6	42
16	Brilliant Blue G, but not Fenofibrate, Treatment Reverts Hemiparkinsonian Behavior and Restores Dopamine Levels in an Animal Model of Parkinson's Disease. Cell Transplantation, 2017, 26, 669-677.	1.2	39
17	MPP+-Lesioned Mice: an Experimental Model of Motor, Emotional, Memory/Learning, and Striatal Neurochemical Dysfunctions. Molecular Neurobiology, 2017, 54, 6356-6377.	1.9	31
18	Dopaminergic and GABAergic Neuron In Vitro Differentiation from Embryonic Stem Cells. Neuromethods, 2017, , 45-53.	0.2	1

#	Article	IF	CITATIONS
19	Brilliant Blue-G but not Fenofibrate Treatment Reverts Hemiparkinsonian Behavior and Restores Dopamine Levels in an Animal Model of Parkinson's Disease. Cell Transplantation, 2017, , .	1.2	3
20	Stem Cells: Principles and Applications. , 2016, , 1-13.		1
21	Creatine, Similar to Ketamine, Counteracts Depressive-Like Behavior Induced by Corticosterone via PI3K/Akt/mTOR Pathway. Molecular Neurobiology, 2016, 53, 6818-6834.	1.9	111
22	Purinergic receptors in embryonic and adult neurogenesis. Neuropharmacology, 2016, 104, 272-281.	2.0	74
23	Involvement of PI3K/Akt Signaling Pathway and Its Downstream Intracellular Targets in the Antidepressant-Like Effect of Creatine. Molecular Neurobiology, 2016, 53, 2954-2968.	1.9	50
24	The modulation of NMDA receptors and l-arginine/nitric oxide pathway is implicated in the anti-immobility effect of creatine in the tail suspension test. Amino Acids, 2015, 47, 795-811.	1.2	40
25	Creatine, similarly to ketamine, affords antidepressant-like effects in the tail suspension test via adenosine A1 and A2A receptor activation. Purinergic Signalling, 2015, 11, 215-227.	1.1	34
26	Intracellular Calcium Measurements for Functional Characterization of Neuronal Phenotypes. Methods in Molecular Biology, 2015, 1341, 245-255.	0.4	8
27	Involvement of PKA, PKC, CAMK-II and MEK1/2 in the acute antidepressant-like effect of creatine in mice. Pharmacological Reports, 2014, 66, 653-659.	1.5	24
28	Serotonergic and noradrenergic systems are implicated in the antidepressant-like effect of ursolic acid in mice. Pharmacology Biochemistry and Behavior, 2014, 124, 108-116.	1.3	43
29	Evidence for the involvement of 5-HT1A receptor in the acute antidepressant-like effect of creatine in mice. Brain Research Bulletin, 2013, 95, 61-69.	1.4	29
30	Antidepressant-like effects of fractions, essential oil, carnosol and betulinic acid isolated from Rosmarinus officinalis L Food Chemistry, 2013, 136, 999-1005.	4.2	113
31	The activation of α1-adrenoceptors is implicated in the antidepressant-like effect of creatine in the tail suspension test. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2013, 44, 39-50.	2.5	32
32	The Antidepressant-like Effect of Physical Activity on a Voluntary Running Wheel. Medicine and Science in Sports and Exercise, 2013, 45, 851-859.	0.2	35
33	Guanosine produces an antidepressant-like effect through the modulation of NMDA receptors, nitric oxide–cGMP and PI3K/mTOR pathways. Behavioural Brain Research, 2012, 234, 137-148.	1.2	77