## Lourdes Rubio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6542740/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                    | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Natural frequencies for bending vibrations of Timoshenko cracked beams. Journal of Sound and Vibration, 2006, 290, 640-653.                                                                                | 3.9 | 163       |
| 2  | Improvement of chatter stability in boring operations with passive vibration absorbers. International<br>Journal of Mechanical Sciences, 2010, 52, 1376-1384.                                              | 6.7 | 111       |
| 3  | Optimization of passive vibration absorbers to reduce chatter in boring. Mechanical Systems and Signal Processing, 2013, 41, 691-704.                                                                      | 8.0 | 60        |
| 4  | Determination of the Stress Intensity Factor of an elliptical breathing crack in a rotating shaft.<br>International Journal of Fatigue, 2015, 77, 216-231.                                                 | 5.7 | 25        |
| 5  | Static behaviour of a shaft with an elliptical crack. Mechanical Systems and Signal Processing, 2011, 25, 1674-1686.                                                                                       | 8.0 | 22        |
| 6  | Unique determination of a single crack in a uniform simply supported beam in bending vibration.<br>Journal of Sound and Vibration, 2016, 371, 94-109.                                                      | 3.9 | 22        |
| 7  | Crack identification in non-uniform rods by two frequency data. International Journal of Solids and Structures, 2015, 75-76, 61-80.                                                                        | 2.7 | 19        |
| 8  | Identification of two cracks in a rod by minimal resonant and antiresonant frequency data.<br>Mechanical Systems and Signal Processing, 2015, 60-61, 1-13.                                                 | 8.0 | 17        |
| 9  | The full nonlinear crack detection problem in uniform vibrating rods. Journal of Sound and Vibration, 2015, 339, 99-111.                                                                                   | 3.9 | 16        |
| 10 | Identification of two cracks with different severity in beams and rods from minimal frequency data.<br>JVC/Journal of Vibration and Control, 2016, 22, 3102-3117.                                          | 2.6 | 12        |
| 11 | Identification of an open crack in a beam with variable profile by two resonant frequencies.<br>JVC/Journal of Vibration and Control, 2018, 24, 839-859.                                                   | 2.6 | 12        |
| 12 | Stress intensity factor estimation for unbalanced rotating cracked shafts by artificial neural networks. Fatigue and Fracture of Engineering Materials and Structures, 2015, 38, 352-367.                  | 3.4 | 11        |
| 13 | Neural approach to estimate the stress intensity factor of semiâ€elliptical cracks in rotating cracked shafts in bending. Fatigue and Fracture of Engineering Materials and Structures, 2018, 41, 539-550. | 3.4 | 10        |
| 14 | Point mass identification in rectangular plates from minimal natural frequency data. Mechanical<br>Systems and Signal Processing, 2016, 80, 245-261.                                                       | 8.0 | 7         |
| 15 | Crack identification in elastically restrained vibrating rods. International Journal of Non-Linear<br>Mechanics, 2017, 94, 257-267.                                                                        | 2.6 | 7         |
| 16 | Propagation of surface breathing cracks in shafts under quasi-static rotary bending. Nonlinear<br>Dynamics, 2017, 90, 1987-2000.                                                                           | 5.2 | 7         |
| 17 | Stress Intensity Factor and propagation of an open sickle shaped crack in a shaft under bending.<br>Theoretical and Applied Fracture Mechanics, 2018, 96, 688-698.                                         | 4.7 | 7         |
| 18 | Web-based application for descriptive geometry learning. Computer Applications in Engineering Education, 2010, 18, 574-581.                                                                                | 3.4 | 6         |

LOURDES RUBIO

| #  | Article                                                                                                                                                | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Computer-aided tool for teaching mechanical clutch systems design. Computer Applications in Engineering Education, 2011, 19, 493-500.                  | 3.4 | 5         |
| 20 | A new efficient procedure to solve the nonlinear dynamics of a cracked rotor. Nonlinear Dynamics, 2012, 70, 1731.                                      | 5.2 | 5         |
| 21 | The λ-Curves Method for crack identification in beams. Procedia Engineering, 2017, 199, 1964-1969.                                                     | 1.2 | 3         |
| 22 | FEM Analysis of the SIF in Rotating Shafts Containing Breathing Elliptical Cracks. Mechanisms and Machine Science, 2015, , 323-333.                    | 0.5 | 2         |
| 23 | Exact Eigensolutions for a Family of Nonuniform Rods With End Point Masses. Journal of Vibration and Acoustics, Transactions of the ASME, 2017, 139, . | 1.6 | 1         |
| 24 | Elliptical Crack Identification in a Nonrotating Shaft. Shock and Vibration, 2018, 2018, 1-10.                                                         | 0.6 | 1         |