Yiwen Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/654253/publications.pdf

Version: 2024-02-01

		147786	1	89881	
95	2,953	31		50	
papers	citations	h-index		g-index	
					1
101	101	101		3011	
all docs	docs citations	times ranked		citing authors	

#	Article	IF	CITATIONS
1	Porous Hydrogen-Bonded Frameworks Assembled from Metal-Nucleobase Entities for Xe/Kr Separation. CCS Chemistry, 2022, 4, 381-388.	7.8	22
2	Hydrogenâ€Bonded Metal–Nucleobase Frameworks for Efficient Separation of Xenon and Krypton. Angewandte Chemie - International Edition, 2022, 61, .	13.8	36
3	Shellâ€like Xenon Nanoâ€Traps within Angular Anionâ€Pillared Layered Porous Materials for Boosting Xe/Kr Separation. Angewandte Chemie, 2022, 134, .	2.0	3
4	Highly sensitive and specific determination of imidacloprid pesticide by a novel Fe3O4@SiO2@MIPIL fluorescent sensor. Analytica Chimica Acta, 2022, 1195, 339449.	5.4	14
5	Shellâ€like Xenon Nanoâ€Traps within Angular Anionâ€Pillared Layered Porous Materials for Boosting Xe/Kr Separation. Angewandte Chemie - International Edition, 2022, 61, .	13.8	34
6	Aggregation-induced emission monomer-based fluorescent molecularly imprinted poly(ionic liquid) synthesized by a one-pot method for sensitively detecting 4-nitrophenol. Analytical Methods, 2022, 14, 1023-1030.	2.7	3
7	Titelbild: Hydrogenâ€Bonded Metal–Nucleobase Frameworks for Efficient Separation of Xenon and Krypton (Angew. Chem. 11/2022). Angewandte Chemie, 2022, 134, .	2.0	2
8	Shapeâ€size sieving of <i>trans</i> â€and <scp><i>cis</i>â€piperylene</scp> isomers with <scp>gallateâ€based metalâ€organic</scp> frameworks. AICHE Journal, 2022, 68, .	3.6	1
9	Highly efficient and anti-poisoning single-atom cobalt catalyst for selective hydrogenation of nitroarenes. Nano Research, 2022, 15, 10006-10013.	10.4	7
10	Hydrogen-bonded metal-nucleobase frameworks for highly selective capture of ethane/propane from methane and methane/nitrogen separation. Nano Research, 2022, 15, 7695-7702.	10.4	15
11	Double-Accessible Open Metal Sites in Metal–Organic Frameworks with Suitable Pore Size for Efficient Xe/Kr Separation. Industrial & Engineering Chemistry Research, 2022, 61, 7361-7369.	3.7	12
12	Molecular Sieving of Propylene from Propane in Metal–Organic Framework-Derived Ultramicroporous Carbon Adsorbents. ACS Applied Materials & Samp; Interfaces, 2022, 14, 30443-30453.	8.0	18
13	Discrimination of xylene isomers in a stacked coordination polymer. Science, 2022, 377, 335-339.	12.6	94
14	Shaping of gallate-based metal-organic frameworks for adsorption separation of ethylene from acetylene and ethane. Journal of Colloid and Interface Science, 2021, 581, 177-184.	9.4	18
15	CoNi Alloy Nanoparticles Embedded in Metal–Organic Frameworkâ€Derived Carbon for the Highly Efficient Separation of Xenon and Krypton via a Chargeâ€Transfer Effect. Angewandte Chemie, 2021, 133, 2461-2468.	2.0	11
16	CoNi Alloy Nanoparticles Embedded in Metal–Organic Frameworkâ€Derived Carbon for the Highly Efficient Separation of Xenon and Krypton via a Chargeâ€Transfer Effect. Angewandte Chemie - International Edition, 2021, 60, 2431-2438.	13.8	53
17	Progress in the Enantioseparation of β-Blockers by Chromatographic Methods. Molecules, 2021, 26, 468.	3.8	9
18	A robust ethane-trapping metal-organic framework for efficient purification of ethylene. Science China Chemistry, 2021, 64, 666-672.	8.2	16

#	Article	IF	CITATIONS
19	Deep Desulfurization with Record SO ₂ Adsorption on the Metal–Organic Frameworks. Journal of the American Chemical Society, 2021, 143, 9040-9047.	13.7	108
20	Turnâ€On Photocatalysis: Creating Loneâ€Pair Donor–Acceptor Bonds in Organic Photosensitizer to Enhance Intersystem Crossing. Advanced Science, 2021, 8, e2100631.	11.2	24
21	Crystal Structure Transformation in Hydrogenâ€bonded Organic Frameworks via Ion Exchange. Chemistry - an Asian Journal, 2021, 16, 3978-3984.	3.3	10
22	Fluorescent aptasensor based on D-AMA/F-CSC for the sensitive and specific recognition of myoglobin. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 228, 117714.	3.9	10
23	Microporous Carbon Adsorbents Prepared by Activating Reagent-Free Pyrolysis for Upgrading Low-Quality Natural Gas. ACS Sustainable Chemistry and Engineering, 2020, 8, 977-985.	6.7	23
24	Microgeometry-independent equation for measuring infinite dilution activity coefficients using gas-liquid chromatography with static-wall-coated open-tubular columns. Journal of Chromatography A, 2020, 1624, 461264.	3.7	3
25	Highly sensitive determination of 4-nitrophenol with coumarin-based fluorescent molecularly imprinted poly (ionic liquid). Journal of Hazardous Materials, 2020, 398, 122854.	12.4	53
26	Calcium-Based Metal–Organic Framework for Simultaneous Capture of Trace Propyne and Propadiene from Propylene. ACS Applied Materials & Diterfaces, 2020, 12, 17147-17154.	8.0	34
27	Supramolecular Metal–Organic Framework for CO ₂ /CH ₄ and CO ₂ /N ₂ Separation. Industrial & Engineering Chemistry Research, 2020, 59, 7866-7874.	3.7	42
28	Highly sensitive and selective detection of 4-nitroaniline in water by a novel fluorescent sensor based on molecularly imprinted poly(ionic liquid). Analytical and Bioanalytical Chemistry, 2020, 412, 5653-5661.	3.7	14
29	Gallate-Based Metal–Organic Frameworks for Highly Efficient Removal of Trace Propyne from Propylene. Industrial & Description (2020, 59, 13716-13723).	3.7	13
30	Adsorptive Separation of Geometric Isomers of 2-Butene on Gallate-Based Metal–Organic Frameworks. ACS Applied Materials & Camp; Interfaces, 2020, 12, 9609-9616.	8.0	38
31	Highly Sensitive Determination of 2,4,6-Trichlorophenol by Using a Novel SiO ₂ @MIPIL Fluorescence Sensor with a Double Recognition Functional Monomer. ACS Sensors, 2020, 5, 1445-1454.	7.8	29
32	Extraction of various metal ions by open-chain crown ether bridged diphosphates in supercritical carbon dioxide. Pure and Applied Chemistry, 2020, 92, 1683-1694.	1.9	3
33	Engineering the Pore Size of Pillared-Layer Coordination Polymers Enables Highly Efficient Adsorption Separation of Acetylene from Ethylene. ACS Applied Materials & Separation of Acetylene from Ethylene. ACS Applied Materials & Separation of Acetylene from Ethylene. ACS Applied Materials & Separation of Acetylene from Ethylene. ACS Applied Materials & Separation of Acetylene from Ethylene. ACS Applied Materials & Separation of Acetylene from Ethylene. ACS Applied Materials & Separation of Acetylene from Ethylene. ACS Applied Materials & Separation of Acetylene from Ethylene. ACS Applied Materials & Separation of Acetylene from Ethylene. ACS Applied Materials & Separation of Acetylene from Ethylene. ACS Applied Materials & Separation of Acetylene from Ethylene. ACS Applied Materials & Separation of Acetylene from Ethylene. ACS Applied Materials & Separation of Acetylene from Ethylene. ACS Applied Materials & Separation from Ethylene from Ethylene. ACS Applied Materials & Separation from Ethylene	8.0	71
34	M-Gallate (M = Ni, Co) Metal–Organic Framework-Derived Ni/C and Bimetallic Ni–Co/C Catalysts for Lignin Conversion into Monophenols. ACS Sustainable Chemistry and Engineering, 2019, 7, 12955-12963.	6.7	69
35	Adsorptive Separation of Acetylene from Ethylene in Isostructural Gallateâ€Based Metal–Organic Frameworks. Chemistry - A European Journal, 2019, 25, 15516-15524.	3.3	27
36	A Robust Squarate-Based Metal–Organic Framework Demonstrates Record-High Affinity and Selectivity for Xenon over Krypton. Journal of the American Chemical Society, 2019, 141, 9358-9364.	13.7	162

#	Article	IF	CITATIONS
37	Fluorometric determination of cardiac myoglobin based on energy transfer from a pyrene-labeled aptamer to graphene oxide. Mikrochimica Acta, 2019, 186, 287.	5.0	10
38	A Cross-Linker-Based Poly(Ionic Liquid) for Sensitive Electrochemical Detection of 4-Nonylphenol. Nanomaterials, 2019, 9, 513.	4.1	12
39	Inverse Adsorption Separation of CO ₂ /C ₂ H ₂ Mixture in Cyclodextrin-Based Metal–Organic Frameworks. ACS Applied Materials & Samp; Interfaces, 2019, 11, 2543-2550.	8.0	134
40	Organocatalyzed cross-dehydrogenative coupling for C(sp3) \hat{a} e"O bonds formation: a rapid access to \hat{l} ±-aminoxyl isochromans. Catalysis Letters, 2019, 149, 574-579.	2.6	7
41	Ionic Liquid-Based Sensors for Fast Determination of Aromatic Compounds in the Environment. , 2019, , 1-8.		0
42	A new composite of graphene and molecularly imprinted polymer based on ionic liquids as functional monomer and cross-linker for electrochemical sensing 6-benzylaminopurine. Biosensors and Bioelectronics, 2018, 108, 38-45.	10.1	61
43	Efficient, Selective, and Reversible SO ₂ Capture with Highly Crosslinked Ionic Microgels via a Selective Swelling Mechanism. Advanced Functional Materials, 2018, 28, 1704292.	14.9	51
44	Voltammetric determination of 5-hydroxytryptamine based on the use of platinum nanoparticles coated with molecularly imprinted silica. Mikrochimica Acta, 2018, 185, 219.	5.0	16
45	Rapid and reliable determination of p-nitroaniline in wastewater by molecularly imprinted fluorescent polymeric ionic liquid microspheres. Biosensors and Bioelectronics, 2018, 99, 47-55.	10.1	67
46	An Electrochemical Sensor for Diphenylamine Detection Based on Reduced Graphene Oxide/Fe3O4-Molecularly Imprinted Polymer with 1,4-Butanediyl-3,3'-bis-l-vinylimidazolium Dihexafluorophosphate Ionic Liquid as Cross-Linker. Polymers, 2018, 10, 1329.	4.5	37
47	Molecular Sieving of Ethane from Ethylene through the Molecular Crossâ€Section Size Differentiation in Gallateâ€based Metal–Organic Frameworks. Angewandte Chemie, 2018, 130, 16252-16257.	2.0	72
48	Molecular Sieving of Ethane from Ethylene through the Molecular Crossâ€Section Size Differentiation in Gallateâ€based Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2018, 57, 16020-16025.	13.8	202
49	Determination and correlation of the solubility of L-arabinose and D-galactose in binary solvent mixtures from 278.15 to 333.15 K. Korean Journal of Chemical Engineering, 2018, 35, 2043-2051.	2.7	3
50	Nanostructured Branched-Chain Carboxylate Ionic Liquids: Synthesis, Characterization, and Extraordinary Solubility for Bioactive Molecules. ACS Sustainable Chemistry and Engineering, 2018, 6, 8983-8991.	6.7	23
51	A novel fluorescent aptasensor for the highly sensitive and selective detection of cardiac troponin I based on a graphene oxide platform. Analytical and Bioanalytical Chemistry, 2018, 410, 4285-4291.	3.7	55
52	Highly efficient separation of methane from nitrogen on a squarateâ€based metalâ€organic framework. AICHE Journal, 2018, 64, 3681-3689.	3.6	94
53	Organocatalytic Approach for Transfer Hydrogenation of Quinolines, Benzoxazines and Benzothiazines. Catalysis Letters, 2017, 147, 1673-1678.	2.6	8
54	Synthesis of anion-functionalized mesoporous poly(ionic liquid)s via a microphase separation-hypercrosslinking strategy: highly efficient adsorbents for bioactive molecules. Journal of Materials Chemistry A, 2017, 5, 14114-14123.	10.3	54

#	Article	IF	CITATIONS
55	Efficient adsorption separation of acetylene and ethylene via supported ionic liquid on metalâ€organic framework. AICHE Journal, 2017, 63, 2165-2175.	3.6	62
56	Catalytic dehydration of glucose to 5â€hydroxymethylfurfural with a bifunctional metalâ€organic framework. AICHE Journal, 2016, 62, 4403-4417.	3.6	104
57	CO ₂ -Assisted Back-Extraction Method for Ionic Liquid Biphasic Systems. ACS Sustainable Chemistry and Engineering, 2016, 4, 4403-4410.	6.7	2
58	New Insights into CO2 Absorption Mechanisms with Amino-Acid Ionic Liquids. ChemSusChem, 2016, 9, 765-765.	6.8	0
59	Enhanced solubilization and extraction of hydrophobic bioactive compounds using water/ionic liquid mixtures. Green Chemistry, 2016, 18, 3549-3557.	9.0	40
60	Incorporation of <i>N</i> â€Methylâ€ <scp>d</scp> â€glucamine Functionalized Oligomer into MILâ€101(Cr) for Highly Efficient Removal of Boric Acid from Water. Chemistry - A European Journal, 2016, 22, 15290-15297.	3.3	17
61	New Insights into CO ₂ Absorption Mechanisms with Aminoâ€Acid Ionic Liquids. ChemSusChem, 2016, 9, 806-812.	6.8	77
62	Separation of highly unsaturated fatty acid methyl esters from model bio-oils with ionic liquid-cosolvent as extractants. RSC Advances, 2016, 6, 60709-60716.	3.6	7
63	Adsorption separation of raffinose from sucrose by activated carbon: Equilibrium, kinetics and dynamic breakthrough. Separation Science and Technology, 2016, 51, 1636-1644.	2.5	2
64	Nonaqueous Lyotropic Ionic Liquid Crystals: Preparation, Characterization, and Application in Extraction. Chemistry - A European Journal, 2015, 21, 9150-9156.	3.3	29
65	Simulated moving bed chromatography for the separation of ethyl esters of eicosapentaenoic acid and docosahexaenoic acid under nonlinear conditions. Journal of Chromatography A, 2015, 1425, 189-197.	3.7	10
66	Adsorption behavior of \hat{l}_{\pm} -tocopheryl succinate and \hat{l}_{\pm} -tocopheryl polyethylene glycol succinate onto weakly basic anion exchange resins. Korean Journal of Chemical Engineering, 2015, 32, 511-520.	2.7	1
67	Selective separation of zwitterionic phospholipid homologues with functional ionic liquids as extractants. RSC Advances, 2015, 5, 77581-77588.	3.6	8
68	A general method for the separation of amphiphilic surface-active poly(ethylene glycol) mono- and di-esters with long-chain ionic liquid-based biphasic systems. Green Chemistry, 2014, 16, 102-107.	9.0	8
69	Roomâ€Temperature Direct Alkenylation of 3â€Arylsydnones. European Journal of Organic Chemistry, 2014, 2014, 7810-7813.	2.4	11
70	Fabrication of cuprous nanoparticles in MIL-101: an efficient adsorbent for the separation of olefin–paraffin mixtures. RSC Advances, 2014, 4, 20230-20233.	3.6	79
71	Adsorption of 2-Butyl-2-ethyl-1,3-propanediol from Aqueous Solutions on Activated Carbon: Salt-Out Effect on Equilibrium, Kinetics, and Dynamics. Industrial & Engineering Chemistry Research, 2014, 53, 8592-8598.	3.7	9
72	Effect of Tethering Strategies on the Surface Structure of Amine-Functionalized Ionic Liquids: Inspiration on the CO ₂ Capture. Journal of Physical Chemistry C, 2013, 117, 16012-16021.	3.1	19

#	Article	IF	Citations
73	Roomâ€Temperature Direct Alkenylation of 5â€Pyrazolones. European Journal of Organic Chemistry, 2013, 2013, 5276-5281.	2.4	23
74	The essential role of hydrogenâ€bonding interaction in the extractive separation of phenolic compounds by ionic liquid. AICHE Journal, 2013, 59, 1657-1667.	3.6	57
75	Selective Extraction of 1-Hexene Against <i>n</i> -Hexane in Ionic Liquids with or without Silver Salt. Industrial & Engineering Chemistry Research, 2012, 51, 8588-8597.	3.7	33
76	Effect of the Ionic Liquid 1-Butyl-3-Methylimidazolium Tetrafluoroborate on the Properties of Water + Triton X-100 + Hexanol + Cyclohexane Microemulsions. Journal of Chemical & Engineering Data, 2012, 57, 1274-1278.	1.9	8
77	Selective Liquid–Liquid Extraction of Natural Phenolic Compounds Using Amino Acid Ionic Liquids: A Case of α-Tocopherol and Methyl Linoleate Separation. Industrial & Engineering Chemistry Research, 2012, 51, 6480-6488.	3.7	41
78	High performance separation of sparingly aqua-/lipo-soluble bioactive compounds with an ionic liquid-based biphasic system. Green Chemistry, 2012, 14, 2617.	9.0	26
79	Efficient synthesis of 1,3-diaryl-4-halo-1 <i>H</i> -pyrazoles from 3-arylsydnones and 2-aryl-1,1-dihalo-1-alkenes. Beilstein Journal of Organic Chemistry, 2011, 7, 1656-1662.	2.2	19
80	Preparation and characterization of mono―and diâ€dâ€Î±â€tocopheryl polyethylene glycol 1000 succinate. Journal of Applied Polymer Science, 2011, 119, 3026-3033.	2.6	10
81	Volumetric Properties of Binary Mixtures of 1-Butyl-3-methylimidazolium Chloride + Water or Hydrophilic Solvents at Different Temperatures. Journal of Chemical & Engineering Data, 2010, 55, 1750-1754.	1.9	34
82	Adsorption of Propylene and Ethylene on 15 Activated Carbons. Journal of Chemical & Engineering Data, 2010, 55, 5669-5672.	1.9	13
83	Adsorption Behavior of Glucose, Xylose, and Arabinose on Five Different Cation Exchange Resins. Journal of Chemical & Deta, 2010, 55, 735-738.	1.9	23
84	Separation of Macromolecular Impurities in Penicillin G Sodium by Gel Filtration Chromatography. Journal of Liquid Chromatography and Related Technologies, 2009, 32, 984-999.	1.0	2
85	Changes in inhibitory activity and secondary conformation of soybean trypsin inhibitors induced by tea polyphenol complexation. Journal of the Science of Food and Agriculture, 2009, 89, 2435-2439.	3.5	6
86	Phase Behavior and Micropolarity of Ammonium Carboxylate Perfluoropolyether Reverse Micelles in Supercritical Carbon Dioxide. Journal of Chemical & Engineering Data, 2009, 54, 1884-1888.	1.9	6
87	Separation and Determination of Asiaticoside, Asiaticoside-B and Madecassoside in <i>Centella asiatica</i> Total Triterpenoid Saponins by HPLC. Journal of Liquid Chromatography and Related Technologies, 2009, 32, 1891-1900.	1.0	12
88	Selective Separation of Tocopherol Homologues by Liquidâ [*] Liquid Extraction Using Ionic Liquids. Industrial & Liquide Chemistry Research, 2009, 48, 6417-6422.	3.7	74
89	Adsorption Behavior of Penicillin G Sodium on Hydrophilic Gel Toyopearl HW-40F. Journal of Chemical & Engineering Data, 2009, 54, 1052-1055.	1.9	1
90	Rapid determination of polycyclic aromatic hydrocarbons in natural tocopherols by high-performance liquid chromatography with fluorescence detection. Food Chemistry, 2008, 110, 226-232.	8.2	11

YIWEN YANG

#	Article	IF	CITATION
91	Enantioseparation of Paroxetine Precursors by HPLC on Amylose and Tartardiamideâ€Based Chiral Stationary Phases. Journal of Liquid Chromatography and Related Technologies, 2008, 31, 1147-1161.	1.0	7
92	Ultrasound-Assisted Extraction of Soyasaponins from Hypocotyls, and Analysis by LC-ESI-MS. Chromatographia, 2007, 65, 555-560.	1.3	8
93	Solubilities of Dodecylpolyoxyethylene Polyoxypropylene Ether in Supercritical Carbon Dioxide. Journal of Chemical & Data, 2006, 51, 542-544.	1.9	24
94	Quantification of Soybean Phospholipids in Soybean Degummed Oil Residue by HPLC with Evaporative Light Scattering Detection. Journal of Liquid Chromatography and Related Technologies, 2005, 28, 1333-1343.	1.0	14
95	Hydrogenâ€Bonded Metalâ€Nucleobase Frameworks for Efficient Separation of Xenon and Krypton. Angewandte Chemie, 0, , .	2.0	4