
Antonio DomÃ-nguez Meijide

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6542469/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Doxycycline Interferes With Tau Aggregation and Reduces Its Neuronal Toxicity. Frontiers in Aging Neuroscience, 2021, 13, 635760.	3.4	14
2	Doxycycline inhibits α-synuclein-associated pathologies in vitro and in vivo. Neurobiology of Disease, 2021, 151, 105256.	4.4	35
3	Aging-Related Overactivity of the Angiotensin/AT1 Axis Decreases Sirtuin 3 Levels in the Substantia Nigra, Which Induces Vulnerability to Oxidative Stress and Neurodegeneration. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2020, 75, 416-424.	3.6	14
4	Pharmacological Modulators of Tau Aggregation and Spreading. Brain Sciences, 2020, 10, 858.	2.3	17
5	Effects of pharmacological modulators of α-synuclein and tau aggregation and internalization. Scientific Reports, 2020, 10, 12827.	3.3	29
6	Synucleinopathies: Where we are and where we need to go. Journal of Neurochemistry, 2020, 153, 433-454.	3.9	62
7	Cytosolic Trapping of a Mitochondrial Heat Shock Protein Is an Early Pathological Event in Synucleinopathies. Cell Reports, 2019, 28, 65-77.e6.	6.4	41
8	Spreading of α-Synuclein and Tau: A Systematic Comparison of the Mechanisms Involved. Frontiers in Molecular Neuroscience, 2019, 12, 107.	2.9	79
9	LRRK2, alpha-synuclein, and tau: partners in crime or unfortunate bystanders?. Biochemical Society Transactions, 2019, 47, 827-838.	3.4	15
10	Synthesis and evaluation of esterified Hsp70 agonists in cellular models of protein aggregation and folding. Bioorganic and Medicinal Chemistry, 2019, 27, 79-91.	3.0	17
11	Bidirectional Neural Interaction Between Central Dopaminergic and Gut Lesions in Parkinson's Disease Models. Molecular Neurobiology, 2018, 55, 7297-7316.	4.0	79
12	Aging-related dysregulation in enteric dopamine and angiotensin system interactions: implications for gastrointestinal dysfunction in the elderly. Oncotarget, 2018, 9, 10834-10846.	1.8	11
13	Dopamine modulates astroglial and microglial activity via glial renin-angiotensin system in cultures. Brain, Behavior, and Immunity, 2017, 62, 277-290.	4.1	77
14	Rho Kinase and Dopaminergic Degeneration. Neuroscientist, 2015, 21, 616-629.	3.5	39
15	Angiotensin type 1 receptor blockage reduces l-dopa-induced dyskinesia in the 6-OHDA model of Parkinson's disease. Involvement of vascular endothelial growth factor and interleukin-1β. Experimental Neurology, 2014, 261, 720-732.	4.1	57
16	Aging-related dysregulation of dopamine and angiotensin receptor interaction. Neurobiology of Aging, 2014, 35, 1726-1738.	3.1	75
17	Effect of chronic treatment with angiotensin type 1 receptor antagonists on striatal dopamine levels in normal rats and in a rat model of Parkinson's disease treated with I-DOPA. Neuropharmacology, 2014, 76, 156-168.	4.1	40
18	Dopaminergic degeneration is enhanced by chronic brain hypoperfusion and inhibited by angiotensin receptor blockage. Age, 2013, 35, 1675-1690.	3.0	32

#	Article	IF	CITATIONS
19	Brain angiotensin regulates iron homeostasis in dopaminergic neurons and microglial cells. Experimental Neurology, 2013, 250, 384-396.	4.1	39
20	Inhibition of Rho kinase mediates the neuroprotective effects of estrogen in the MPTP model of Parkinson's disease. Neurobiology of Disease, 2013, 58, 209-219.	4.4	62
21	Dopamineâ€Angiotensin interactions in the basal ganglia and their relevance for Parkinson's disease. Movement Disorders, 2013, 28, 1337-1342.	3.9	77
22	Involvement of microglial RhoA/Rho-Kinase pathway activation in the dopaminergic neuron death. Role of angiotensin via angiotensin type 1 receptors. Neurobiology of Disease, 2012, 47, 268-279.	4.4	91