
Yasuaki Anami

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/65424/publications.pdf Version: 2024-02-01

Υλοιιλκι Δηληγι

#	Article	IF	CITATIONS
1	Homogeneous antibody–angiopep 2 conjugates for effective brain targeting. RSC Advances, 2022, 12, 3359-3364.	3.6	5
2	Enhanced anti-angiogenetic effect of transferrin receptor-mediated delivery of VECF-trap in a glioblastoma mouse model. MAbs, 2022, 14, 2057269.	5.2	8
3	Homogeneity of antibody-drug conjugates critically impacts the therapeutic efficacy in brain tumors. Cell Reports, 2022, 39, 110839.	6.4	18
4	Chemical generation of small molecule-based bispecific antibody-drug conjugates for broadening the target scope. Bioorganic and Medicinal Chemistry, 2021, 32, 116013.	3.0	7
5	Antibody-drug conjugates with dual payloads for combating breast tumor heterogeneity and drug resistance. Nature Communications, 2021, 12, 3528.	12.8	108
6	Total Synthesis of the Monomeric Unit of Lomaiviticin A. Journal of the American Chemical Society, 2020, 142, 20201-20207.	13.7	18
7	LILRB4-targeting Antibody–Drug Conjugates for the Treatment of Acute Myeloid Leukemia. Molecular Cancer Therapeutics, 2020, 19, 2330-2339.	4.1	29
8	Transglutaminase-Mediated Conjugations. Methods in Molecular Biology, 2020, 2078, 71-82.	0.9	24
9	Next-generation Antibody-drug Conjugates (ADCs): Exploring New Frontiers with Chemical Approaches. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2020, 78, 503-515.	0.1	1
10	Disrupting LILRB4/APOE Interaction by an Efficacious Humanized Antibody Reverses T-cell Suppression and Blocks AML Development. Cancer Immunology Research, 2019, 7, 1244-1257.	3.4	51
11	Identification of the Histidine Residue in Vitamin D Receptor That Covalently Binds to Electrophilic Ligands. Journal of Medicinal Chemistry, 2018, 61, 6339-6349.	6.4	21
12	Glutamic acid–valine–citrulline linkers ensure stability and efficacy of antibody–drug conjugates in mice. Nature Communications, 2018, 9, 2512.	12.8	119
13	Truncated Autoinducing Peptide Conjugates Selectively Recognize and Kill <i>Staphylococcus aureus</i> . ACS Infectious Diseases, 2017, 3, 406-410.	3.8	12
14	Apo- and Antagonist-Binding Structures of Vitamin D Receptor Ligand-Binding Domain Revealed by a Combination Andlysis of MD Simulations and SAXS Experiments. Biophysical Journal, 2017, 112, 48a.	0.5	0
15	SRC2-3 binds to vitamin D receptor with high sensitivity and strong affinity. Bioorganic and Medicinal Chemistry, 2017, 25, 568-574.	3.0	9
16	Enzymatic conjugation using branched linkers for constructing homogeneous antibody–drug conjugates with high potency. Organic and Biomolecular Chemistry, 2017, 15, 5635-5642.	2.8	67
17	Apo- and Antagonist-Binding Structures of Vitamin D Receptor Ligand-Binding Domain Revealed by Hybrid Approach Combining Small-Angle X-ray Scattering and Molecular Dynamics. Journal of Medicinal Chemistry, 2016, 59, 7888-7900.	6.4	25
18	Helix12-Stabilization Antagonist of Vitamin D Receptor. Bioconjugate Chemistry, 2016, 27, 1750-1761.	3.6	20

#	Article	IF	CITATIONS
19	Fine tuning of agonistic/antagonistic activity for vitamin D receptor by 22-alkyl chain length of ligands: 22S-Hexyl compound unexpectedly restored agonistic activity. Bioorganic and Medicinal Chemistry, 2015, 23, 7274-7281.	3.0	16
20	A Mixed Population of Antagonist and Agonist Binding Conformers in a Single Crystal Explains Partial Agonism against Vitamin D Receptor: Active Vitamin D Analogues with 22 <i>R</i> -Alkyl Group. Journal of Medicinal Chemistry, 2014, 57, 4351-4367.	6.4	30
21	Development of Vitamin D Analogs Modulating the Pocket Structure of Vitamin D Receptor. Current Topics in Medicinal Chemistry, 2014, 14, 2378-2387.	2.1	10