Nada Lallous

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6542393/publications.pdf Version: 2024-02-01

Νάρα Γάμιομε

#	Article	IF	CITATIONS
1	Development of VPC-70619, a Small-Molecule N-Myc Inhibitor as a Potential Therapy for Neuroendocrine Prostate Cancer. International Journal of Molecular Sciences, 2022, 23, 2588.	1.8	7
2	Development of Novel Inhibitors Targeting the D-Box of the DNA Binding Domain of Androgen Receptor. International Journal of Molecular Sciences, 2021, 22, 2493.	1.8	17
3	Evaluation of Darolutamide (ODM201) Efficiency on Androgen Receptor Mutants Reported to Date in Prostate Cancer Patients. Cancers, 2021, 13, 2939.	1.7	12
4	Development of an Androgen Receptor Inhibitor Targeting the N-Terminal Domain of Androgen Receptor for Treatment of Castration Resistant Prostate Cancer. Cancers, 2021, 13, 3488.	1.7	16
5	Optimization of New Catalytic Topoisomerase II Inhibitors as an Anti-Cancer Therapy. Cancers, 2021, 13, 3675.	1.7	8
6	Development of 2-(5,6,7-Trifluoro-1H-Indol-3-yl)-quinoline-5-carboxamide as a Potent, Selective, and Orally Available Inhibitor of Human Androgen Receptor Targeting Its Binding Function-3 for the Treatment of Castration-Resistant Prostate Cancer. Journal of Medicinal Chemistry, 2021, 64, 14968-14982.	2.9	9
7	Dual-Inhibitors of N-Myc and AURKA as Potential Therapy for Neuroendocrine Prostate Cancer. International Journal of Molecular Sciences, 2020, 21, 8277.	1.8	14
8	Deep Learning Modeling of Androgen Receptor Responses to Prostate Cancer Therapies. International Journal of Molecular Sciences, 2020, 21, 5847.	1.8	14
9	Discovery of New Catalytic Topoisomerase II Inhibitors for Anticancer Therapeutics. Frontiers in Oncology, 2020, 10, 633142.	1.3	19
10	Androgen receptor-binding sites are highly mutated in prostate cancer. Nature Communications, 2020, 11, 832.	5.8	44
11	Androgen receptor plasticity and its implications for prostate cancer therapy. Cancer Treatment Reviews, 2019, 81, 101871.	3.4	40
12	Computer-Aided Discovery of Small Molecules Targeting the RNA Splicing Activity of hnRNP A1 in Castration-Resistant Prostate Cancer. Molecules, 2019, 24, 763.	1.7	29
13	lvermectin inhibits HSP27 and potentiates efficacy of oncogene targeting in tumor models. Journal of Clinical Investigation, 2019, 130, 699-714.	3.9	36
14	Head-to-head comparison of efficacy of darolutamide (ODM-201) vs. enzalutamide on mutated forms of the androgen receptor. European Urology Supplements, 2018, 17, e505.	0.1	1
15	Moving Towards Precision Urologic Oncology: Targeting Enzalutamide-resistant Prostate Cancer and Mutated Forms of the Androgen Receptor Using the Novel Inhibitor Darolutamide (ODM-201). European Urology, 2018, 73, 4-8.	0.9	75
16	Computer-aided drug discovery of Myc-Max inhibitors as potential therapeutics for prostate cancer. European Journal of Medicinal Chemistry, 2018, 160, 108-119.	2.6	38
17	Benzothiophenone Derivatives Targeting Mutant Forms of Estrogen Receptor-α in Hormone-Resistant Breast Cancers. International Journal of Molecular Sciences, 2018, 19, 579.	1.8	9
18	20(S)-protopanaxadiol regio-selectively targets androgen receptor: anticancer effects in castration-resistant prostate tumors. Oncotarget, 2018, 9, 20965-20978.	0.8	12

NADA LALLOUS

#	Article	IF	CITATIONS
19	An Oncofetal Glycosaminoglycan Modification Provides Therapeutic Access to Cisplatin-resistant Bladder Cancer. European Urology, 2017, 72, 142-150.	0.9	38
20	Bypassing Drug Resistance Mechanisms of Prostate Cancer with Small Molecules that Target Androgen Receptor–Chromatin Interactions. Molecular Cancer Therapeutics, 2017, 16, 2281-2291.	1.9	22
21	Functional analysis of androgen receptor mutations that confer anti-androgen resistance identified in circulating cell-free DNA from prostate cancer patients. Genome Biology, 2016, 17, 10.	3.8	165
22	Targeting Binding Function-3 of the Androgen Receptor Blocks Its Co-Chaperone Interactions, Nuclear Translocation, and Activation. Molecular Cancer Therapeutics, 2016, 15, 2936-2945.	1.9	24
23	Cheminformatics Modeling of Adverse Drug Responses by Clinically Relevant Mutants of Human Androgen Receptor. Journal of Chemical Information and Modeling, 2016, 56, 2507-2516.	2.5	16
24	Drug-Discovery Pipeline for Novel Inhibitors of the Androgen Receptor. Methods in Molecular Biology, 2016, 1443, 31-54.	0.4	4
25	Abstract 4644: Inhibition of the androgen receptor at two drug-targetable sites on the DNA-binding domain protein surface. , 2016, , .		0
26	In silico discovery and validation of potent small-molecule inhibitors targeting the activation function 2 site of human oestrogen receptor α. Breast Cancer Research, 2015, 17, 27.	2.2	20
27	Abstract 3653: Structure-based study to overcome cross-reactivity of novel androgen receptor inhibitors. , 2015, , .		0
28	Identification of a Potent Antiandrogen that Targets the BF3 Site of the Androgen Receptor and Inhibits Enzalutamide-Resistant Prostate Cancer. Chemistry and Biology, 2014, 21, 1476-1485.	6.2	59
29	Structure, Functional Characterization, and Evolution of the Dihydroorotase Domain of Human CAD. Structure, 2014, 22, 185-198.	1.6	60
30	Expression, purification, crystallization and preliminary X-ray diffraction analysis of the aspartate transcarbamoylase domain of human CAD. Acta Crystallographica Section F: Structural Biology Communications, 2013, 69, 1425-1430.	0.7	12
31	Targeting Alternative Sites on the Androgen Receptor to Treat Castration-Resistant Prostate Cancer. International Journal of Molecular Sciences, 2013, 14, 12496-12519.	1.8	51
32	Expression, purification, crystallization and preliminary X-ray diffraction analysis of the dihydroorotase domain of human CAD. Acta Crystallographica Section F: Structural Biology Communications, 2012, 68, 1341-1345.	0.7	12
33	The PHD Finger of Human UHRF1 Reveals a New Subgroup of Unmethylated Histone H3 Tail Readers. PLoS ONE, 2011, 6, e27599.	1.1	36
34	Expression, purification, crystallization and preliminary crystallographic study of the SRA domain of the human UHRF1 protein. Acta Crystallographica Section F: Structural Biology Communications, 2008, 64, 922-925.	0.7	9
35	Targeting HP1-alpha for prevention and treatment of neuroendocrine prostate cancer. Oncology Abstracts, 0, , .	0.0	0