George R Maccartney

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6542375/publications.pdf

Version: 2024-02-01

36 papers 6,936 citations

840776 11 h-index 11 g-index

36 all docs

36 does citations

36 times ranked

4827 citing authors

#	Article	IF	CITATIONS
1	Millimeter-Wave Base Station Diversity for 5G Coordinated Multipoint (CoMP) Applications. IEEE Transactions on Wireless Communications, 2019, 18, 3395-3410.	9.2	91
2	Verification and Calibration of Antenna Cross-Polarization Discrimination and Penetration Loss for Millimeter Wave Communications. , 2018, , .		16
3	Rural Macrocell Path Loss Models for Millimeter Wave Wireless Communications. IEEE Journal on Selected Areas in Communications, 2017, 35, 1663-1677.	14.0	123
4	A Flexible Millimeter-Wave Channel Sounder With Absolute Timing. IEEE Journal on Selected Areas in Communications, 2017, 35, 1402-1418.	14.0	120
5	Millimeter wave small-scale spatial statistics in an urban microcell scenario. , 2017, , .		35
6	Overview of Millimeter Wave Communications for Fifth-Generation (5G) Wireless Networks—With a Focus on Propagation Models. IEEE Transactions on Antennas and Propagation, 2017, 65, 6213-6230.	5.1	1,025
7	Small-Scale, Local Area, and Transitional Millimeter Wave Propagation for 5G Communications. IEEE Transactions on Antennas and Propagation, 2017, 65, 6474-6490.	5.1	110
8	A novel millimeter-wave channel simulator and applications for 5G wireless communications. , 2017, , .		187
9	Study on 3GPP rural macrocell path loss models for millimeter wave wireless communications. , 2017,		33
10	A flexible wideband millimeter-wave channel sounder with local area and NLOS to LOS transition measurements. , 2017, , .		28
11	Indoor office wideband penetration loss measurements at 73 GHz., 2017, , .		45
12	Base Station Diversity Propagation Measurements at 73 GHz Millimeter-Wave for 5G Coordinated Multipoint (CoMP) Analysis., 2017,,.		32
13	Millimeter-Wave Human Blockage at 73 GHz with a Simple Double Knife-Edge Diffraction Model and Extension for Directional Antennas. , 2016, , .		127
14	Millimeter wave wireless communications. , 2016, , .		178
15	$5\mathrm{G}$ 3GPP-Like Channel Models for Outdoor Urban Microcellular and Macrocellular Environments. , $2016,$, .		208
16	Directional Radio Propagation Path Loss Models for Millimeter-Wave Wireless Networks in the 28-, 60-, and 73-GHz Bands. IEEE Transactions on Wireless Communications, 2016, 15, 6939-6947.	9.2	135
17	Indoor 5G 3GPP-like channel models for office and shopping mall environments. , 2016, , .		92
18	28 GHz Millimeter-Wave Ultrawideband Small-Scale Fading Models in Wireless Channels. , 2016, , .		159

#	Article	IF	CITATIONS
19	Indoor Office Plan Environment and Layout-Based mmWave Path Loss Models for 28 GHz and 73 GHz. , 2016, , .		29
20	Millimeter-wave distance-dependent large-scale propagation measurements and path loss models for outdoor and indoor 5G systems. , 2016, , .		89
21	Synthesizing Omnidirectional Antenna Patterns, Received Power and Path Loss from Directional Antennas for 5G Millimeter-Wave Communications. , 2015, , .		56
22	Probabilistic Omnidirectional Path Loss Models for Millimeter-Wave Outdoor Communications. IEEE Wireless Communications Letters, 2015, 4, 357-360.	5.0	243
23	Exploiting directionality for millimeter-wave wireless system improvement. , 2015, , .		58
24	Wideband Millimeter-Wave Propagation Measurements and Channel Models for Future Wireless Communication System Design. IEEE Transactions on Communications, 2015, 63, 3029-3056.	7.8	1,152
25	Millimeter-Wave Omnidirectional Path Loss Data for Small Cell 5G Channel Modeling. IEEE Access, 2015, 3, 1573-1580.	4.2	215
26	Indoor Office Wideband Millimeter-Wave Propagation Measurements and Channel Models at 28 and 73 GHz for Ultra-Dense 5G Wireless Networks. IEEE Access, 2015, 3, 2388-2424.	4.2	554
27	3D mmWave Channel Model Proposal. , 2014, , .		105
28	Omnidirectional path loss models in New York City at 28 GHz and 73 GHz., 2014,,.		90
29	28 GHz and 73 GHz signal outage study for millimeter wave cellular and backhaul communications. , 2014, , .		37
30	Evaluation of Empirical Ray-Tracing Model for an Urban Outdoor Scenario at 73 GHz E-Band., 2014,,.		35
31	Millimeter wave multi-beam antenna combining for 5G cellular link improvement in New York City. , 2014, , .		57
32	73 GHz millimeter wave propagation measurements for outdoor urban mobile and backhaul communications in New York City. , 2014, , .		149
33	Radio propagation path loss models for 5G cellular networks in the 28 GHZ and 38 GHZ millimeter-wave bands. , 2014, 52, 78-86.		425
34	Millimeter-Wave Enhanced Local Area Systems: A High-Data-Rate Approach for Future Wireless Networks. IEEE Journal on Selected Areas in Communications, 2014, 32, 1152-1163.	14.0	633
35	Synthesizing Omnidirectional Antenna Patterns, Received Power and Path Loss from Directional Antennas for 5G Millimeter-Wave Communications. , 2014, , .		11
36	Path loss models for 5G millimeter wave propagation channels in urban microcells., 2013,,.		254