
Huiping Zeng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6542226/publications.pdf Version: 2024-02-01

HUDING ZENG

#	Article	IF	CITATIONS
1	A review on the bioenergetics of anaerobic microbial metabolism close to the thermodynamic limits and its implications for digestion applications. Bioresource Technology, 2018, 247, 1095-1106.	4.8	133
2	Effective start-up biofiltration method for Fe, Mn, and ammonia removal and bacterial community analysis. Bioresource Technology, 2015, 176, 149-155.	4.8	88
3	Microbial characteristics and nitrogen removal of simultaneous partial nitrification, anammox and denitrification (SNAD) process treating low C/N ratio sewage. Bioresource Technology, 2014, 169, 103-109.	4.8	81
4	Arsenic(V) removal by granular adsorbents made from water treatment residuals materials and chitosan. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 585, 124036.	2.3	71
5	Magnetic biochar synthesized with waterworks sludge and sewage sludge and its potential for methylene blue removal. Journal of Environmental Chemical Engineering, 2021, 9, 105951.	3.3	45
6	Biodiversity and quantification of functional bacteria in completely autotrophic nitrogen-removal over nitrite (CANON) process. Bioresource Technology, 2012, 118, 399-406.	4.8	41
7	Efficient removal of As(V) from aqueous media by magnetic nanoparticles prepared with Iron-containing water treatment residuals. Scientific Reports, 2020, 10, 9335.	1.6	39
8	Stability and nitrite-oxidizing bacteria community structure in different high-rate CANON reactors. Bioresource Technology, 2015, 175, 189-194.	4.8	37
9	Startup and stable operation of advanced continuous flow reactor and the changes of microbial communities in aerobic granular sludge. Chemosphere, 2020, 243, 125434.	4.2	36
10	Characteristics and formation mechanism of hollow Anammox granular sludge in low-strength ammonia sewage treatment. Chemical Engineering Journal, 2021, 421, 127766.	6.6	36
11	As(V) adsorption by a novel core-shell magnetic nanoparticles prepared with Iron-containing water treatment residuals. Science of the Total Environment, 2021, 753, 142002.	3.9	35
12	Rapid start-up and microbial characteristics of partial nitrification granular sludge treating domestic sewage at room temperature. Bioresource Technology, 2015, 196, 741-745.	4.8	34
13	Nitrate removal by organotrophic anaerobic ammonium oxidizing bacteria with C2/C3 fatty acid in upflow anaerobic sludge blanket reactors. Bioresource Technology, 2015, 193, 408-414.	4.8	34
14	Startup and long term operation of enhanced biological phosphorus removal in continuous-flow reactor with granules. Bioresource Technology, 2016, 212, 92-99.	4.8	32
15	Performance and microbial community of completely autotrophic nitrogen removal over nitrite (CANON) process in two membrane bioreactors (MBR) fed with different substrate levels. Bioresource Technology, 2014, 152, 185-191.	4.8	31
16	Aerobic granular sludge operation and nutrients removal mechanism in a novel configuration reactor combined sequencing batch reactor and continuous-flow reactor. Bioresource Technology, 2019, 292, 122024.	4.8	31
17	Autotrophic nitrogen conversion process and microbial population distribution in biofilter that simultaneously removes Fe, Mn and ammonia from groundwater. International Biodeterioration and Biodegradation, 2018, 135, 53-61.	1.9	30
18	Long term operation of continuous-flow system with enhanced biological phosphorus removal granules at different COD loading. Bioresource Technology, 2016, 216, 761-767.	4.8	27

HUIPING ZENG

#	Article	IF	CITATIONS
19	Operational parameters required for the start-up process of a biofilter to remove Fe, Mn, and NH ₃ -N from low-temperature groundwater. Desalination and Water Treatment, 2016, 57, 3588-3596.	1.0	27
20	Impact of Mn and ammonia on nitrogen conversion in biofilter coupling nitrification and ANAMMOX that simultaneously removes Fe, Mn and ammonia. Science of the Total Environment, 2019, 648, 955-961.	3.9	27
21	The nitrogen removal of autotrophic and heterotrophic bacteria in aerobic granular reactors with different feast/famine ratio. Bioresource Technology, 2019, 272, 370-378.	4.8	27
22	Autotrophic nitrogen removal process in a potable water treatment biofilter that simultaneously removes Mn and NH 4 + -N. Bioresource Technology, 2014, 172, 226-231.	4.8	25
23	As(V) Removal from Water Using a Novel Magnetic Particle Adsorbent Prepared with Iron-Containing Water Treatment Residuals. ACS Sustainable Chemistry and Engineering, 2018, 6, 14734-14742.	3.2	25
24	Resuscitation of starved anaerobic ammonium oxidation sludge system: Impacts of repeated short-term starvation. Bioresource Technology, 2018, 263, 458-466.	4.8	25
25	Iron-loaded magnetic alginate-chitosan double-gel interpenetrated porous beads for phosphate removal from water: Preparation, adsorption behavior and pH stability. Reactive and Functional Polymers, 2022, 177, 105328.	2.0	25
26	Performance of a completely autotrophic nitrogen removal over nitrite process for treating wastewater with different substrates at ambient temperature. Journal of Environmental Sciences, 2013, 25, 688-697.	3.2	24
27	Enhanced biological phosphorus removal using granules in continuous-flow reactor. Chemical Engineering Journal, 2016, 298, 107-116.	6.6	24
28	Optimization and regeneration of chitosan-alginate hybrid adsorbent embedding iron-manganese sludge for arsenic removal. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 607, 125500.	2.3	24
29	Preparation of manganese sludge strengthened chitosan-alginate hybrid adsorbent and its potential for As(III) removal. International Journal of Biological Macromolecules, 2020, 149, 1222-1231.	3.6	24
30	Preparation and Characterization of Sludge-Based Magnetic Biochar by Pyrolysis for Methylene Blue Removal. Nanomaterials, 2021, 11, 2473.	1.9	24
31	Distribution and genetic diversity of functional microorganisms in different CANON reactors. Bioresource Technology, 2012, 123, 574-580.	4.8	23
32	Effect of sludge retention time on continuous-flow system with enhanced biological phosphorus removal granules at different COD loading. Bioresource Technology, 2016, 219, 14-20.	4.8	22
33	Start-Up of a Biofilter in a Full-Scale Groundwater Treatment Plant for Iron and Manganese Removal. International Journal of Environmental Research and Public Health, 2019, 16, 698.	1.2	20
34	Start-up and performance of partial nitritation process using short-term starvation. Bioresource Technology, 2019, 276, 190-198.	4.8	20
35	Insight into enrichment of anaerobic ammonium oxidation bacteria in anammox granulation under decreasing temperature and no strict anaerobic condition: Comparison between continuous and sequencing batch feeding strategies. Science of the Total Environment, 2021, 787, 147601.	3.9	20
36	Fe ₃ O ₄ @C particles synthesized with ironâ€containing water treatment residuals and its potential for methylene blue removal. Journal of Chemical Technology and Biotechnology, 2019, 94, 3970-3980.	1.6	17

HUIPING ZENG

#	Article	IF	CITATIONS
37	Effect of aeration modes on simultaneous nitrogen and phosphorus removal and microbial community in a continuous flow reactor with granules. Bioresource Technology, 2019, 294, 122154.	4.8	17
38	Adsorption of As(V) by magnetic alginate-chitosan porous beads based on iron sludge. Journal of Cleaner Production, 2022, 359, 132117.	4.6	17
39	Characterization and Arsenic Adsorption Behaviors of Water Treatment Residuals from Waterworks for Iron and Manganese Removal. International Journal of Environmental Research and Public Health, 2019, 16, 4912.	1.2	16
40	Operational mode affects the role of organic matter in granular anammox process. Bioresource Technology, 2021, 336, 125337.	4.8	16
41	Long-term operation and autotrophic nitrogen conversion process analysis in a biofilter that simultaneously removes Fe, Mn and ammonia from low-temperature groundwater. Chemosphere, 2019, 222, 407-414.	4.2	15
42	Preparation of adsorbent based on water treatment residuals and chitosan by homogeneous method with freeze-drying and its As(V) removal performance. International Journal of Biological Macromolecules, 2021, 184, 313-324.	3.6	15
43	Nitrogen removal and microbial characteristics in CANON biofilters fed with different ammonia levels. Bioresource Technology, 2014, 171, 168-174.	4.8	14
44	Performance and operational strategy of simultaneous nitrification, denitrification, and phosphorus removal system under the condition of low organic loading rate in wet weather. Chemosphere, 2021, 270, 129464.	4.2	14
45	Start-up, influence factors, and the microbial characteristics of partial nitrification in membrane bioreactor. Desalination and Water Treatment, 2015, 54, 581-589.	1.0	12
46	Simultaneous removal of iron, manganese and ammonia from groundwater: upgrading of waterworks in northeast China. , 0, 175, 196-204.		12
47	Effect of different operational modes on the performance of granular sludge in continuous-flow systems and the successions of microbial communities. Bioresource Technology, 2020, 299, 122573.	4.8	11
48	Column studies on the adsorption of As(V) by granular chitosan adsorbent prepared with backwashing iron-containing sludge. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 627, 127247.	2.3	11
49	Enhancing 2,6-dichlorophenol degradation and nitrate removal in the nano-zero-valent iron (nZVI) solid-phase denitrification system. Chemosphere, 2022, 287, 132249.	4.2	11
50	Performance and influence factors of completely autotrophic nitrogen removal over nitrite (CANON) process in a biofilter packed with volcanic rocks. Environmental Technology (United Kingdom), 2015, 36, 946-952.	1.2	10
51	Optimized hydraulic retention time for phosphorus and COD removal from synthetic domestic sewage with granules in a continuous-flow reactor. Bioresource Technology, 2016, 216, 1083-1087.	4.8	10
52	Fast start-up of anammox process with mixed activated sludge and settling option. Environmental Technology (United Kingdom), 2018, 39, 3088-3095.	1.2	10
53	Preparation of Fe3O4@C with water treatment residuals and its potential in the magnetic coagulation process. Journal of Cleaner Production, 2022, 362, 132327.	4.6	9
54	Removal of As(V) by a core-shell magnetic nanoparticles synthesized with iron-containing water treatment residuals. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 627, 127074.	2.3	8

HUIPING ZENG

#	Article	IF	CITATIONS
55	Analysis of Microbial Population Dynamics in a Partial Nitrifying SBR at Ambient Temperature. Current Microbiology, 2013, 66, 614-620.	1.0	5
56	Formation and performance of partial nitrification granular sludge treating domestic sewage. Desalination and Water Treatment, 2016, 57, 3430-3439.	1.0	5
57	Risk Assessment of the Water Resources Carrying Capacity: A Case Study in North China. Journal of the American Water Resources Association, 2022, 58, 1240-1254.	1.0	4