Wentao Qiu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6542164/publications.pdf

Version: 2024-02-01

361413 454955 46 994 20 30 citations h-index g-index papers 48 48 48 976 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Sensitivity-enhanced surface plasmon resonance sensor utilizing a tungsten disulfide (WS ₂) nanosheets overlayer. Photonics Research, 2018, 6, 485.	7.0	84
2	High-sensitivity vector magnetic field sensor based on side-polished fiber plasmon and ferrofluid. Optics Letters, 2018, 43, 4743.	3.3	69
3	High performance all-fiber temperature sensor based on coreless side-polished fiber wrapped with polydimethylsiloxane. Optics Express, 2018, 26, 9686.	3.4	57
4	Optical anapole mode in nanostructured lithium niobate for enhancing second harmonic generation. Nanophotonics, 2020, 9, 3575-3585.	6.0	55
5	Side-polished few-mode fiber based surface plasmon resonance biosensor. Optics Express, 2019, 27, 11348.	3.4	52
6	Plasmonic Interface Modified with Graphene Oxide Sheets Overlayer for Sensitivity Enhancement. ACS Applied Materials & Distriction (2018), 10, 34916-34923.	8.0	51
7	Long-Range Surface Plasmon Resonance Sensor Based on Side-Polished Fiber for Biosensing Applications. IEEE Journal of Selected Topics in Quantum Electronics, 2019, 25, 1-9.	2.9	48
8	Molybdenum disulfide nanosheets deposited on polished optical fiber for humidity sensing and human breath monitoring. Optics Express, 2017, 25, 28407.	3 . 4	35
9	Broadband, Highâ€ S ensitivity Graphene Photodetector Based on Ferroelectric Polarization of Lithium Niobate. Advanced Optical Materials, 2021, 9, 2100245.	7.3	35
10	Surface plasmon resonance-based microfiber sensor with enhanced sensitivity by gold nanowires. Optical Materials Express, 2018, 8, 3927.	3.0	29
11	Guided resonances on lithium niobate for extremely small electric field detection investigated by accurate sensitivity analysis. Optics Express, 2016, 24, 20196.	3.4	27
12	Theoretical investigation of optical modulators based on graphene-coated side-polished fiber. Optics Express, 2018, 26, 13759.	3.4	27
13	Ultra-compact on-chip slot Bragg grating structure for small electric field detection. Photonics Research, 2017, 5, 212.	7.0	26
14	All light-control-light properties of molybdenum diselenide (MoSe_2)-coated-microfiber. Optics Express, 2017, 25, 28536.	3.4	25
15	MoS ₂ Nanosheets Modified Surface Plasmon Resonance Sensors for Sensitivity Enhancement. Advanced Optical Materials, 2019, 7, 1900479.	7.3	25
16	Sensitivity-enhanced surface plasmon sensor modified with MoSe ₂ overlayer. Optics Express, 2018, 26, 34250.	3.4	25
17	Fano resonance-based highly sensitive, compact temperature sensor on thin film lithium niobate. Optics Letters, 2016, 41, 1106.	3.3	23
18	Coreless side-polished fiber: a novel fiber structure for multimode interference and highly sensitive refractive index sensors. Optics Express, 2017, 25, 5352.	3.4	22

#	Article	IF	CITATIONS
19	An Optical Switch Based on Electro-Optic Mode Deflection in Lithium Niobate Waveguide. IEEE Photonics Technology Letters, 2020, 32, 1295-1298.	2.5	22
20	Recent progress of second harmonic generation based on thin film lithium niobate [Invited]. Chinese Optics Letters, 2021, 19, 060012.	2.9	21
21	Optical and RF Characterization of a Lithium Niobate Photonic Crystal Modulator. IEEE Photonics Technology Letters, 2014, 26, 1332-1335.	2.5	20
22	Highly sensitive all-optical control of light in WS ₂ coated microfiber knot resonator. Optics Express, 2018, 26, 27650.	3.4	19
23	Resonance-assisted light–control–light characteristics of SnS ₂ on a microfiber knot resonator with fast response. Photonics Research, 2018, 6, 1137.	7.0	19
24	Strong reduction of propagation losses in LiNbO3 ridge waveguides. Optical Materials, 2014, 38, 37-41.	3.6	18
25	Resonance-enhanced all-optical modulation of WSe ₂ -based micro-resonator. Nanophotonics, 2020, 9, 2387-2396.	6.0	17
26	Broadband mode-selective couplers based on tapered side-polished fibers. Optics Express, 2021, 29, 19690.	3.4	17
27	High-sensitivity fiber-optic humidity sensor based on microfiber overlaid with niobium disulfide. Journal of Materials Science, 2020, 55, 16576-16587.	3.7	12
28	Electron-plasmon interaction on lithium niobate with gold nanolayer and its field distribution dependent modulation. Optics Express, 2019, 27, 19852.	3.4	12
29	Electro-optic deflection in a lithium niobate quasi-single mode waveguide with microstructured electrodes. Optics Express, 2018, 26, 30100.	3.4	11
30	Reduced graphene oxide wrapped on microfiber and its light-control-light characteristics. Optics Express, 2017, 25, 5415.	3.4	10
31	All-Optical Tuning of Micro-Resonator Overlaid With MoTe ₂ Nanosheets. Journal of Lightwave Technology, 2019, 37, 3637-3646.	4.6	9
32	Interlinked add-drop filter with amplitude modulation routing a fiber-optic microring to a lithium niobate microwaveguide. Optics Letters, 2017, 42, 1496.	3.3	8
33	Measurement of Giant Spin Splitting of Reflected Gaussian Beams. IEEE Photonics Journal, 2018, 10, 1-7.	2.0	8
34	Ultrasensitive temperature sensor and mode converter based on a modal interferometer in a two-mode fiber. Optics Express, 2021, 29, 32135.	3.4	8
35	Broadband all-light-control with WS ₂ coated microfibers. Optics Express, 2019, 27, 12817.	3.4	8
36	Optical characterization of ultra-short Bragg grating on lithium niobate ridge waveguide. Optics Letters, 2014, 39, 371.	3.3	6

#	Article	IF	CITATIONS
37	Upper-limited angular Goos-HĤchen shifts of Laguerre-Gaussian beams. Optics Express, 2018, 26, 5810.	3.4	5
38	A broadband and low-power light-control-light effect in a fiber-optic nano-optomechanical system. Nanoscale, 2020, 12, 9800-9809.	5.6	5
39	Broadband Light Amplitude Tuning Characteristics of SnSe ₂ Coated Microfiber. Journal of Lightwave Technology, 2020, 38, 6089-6096.	4.6	4
40	Design of High-Speed Mid-Infrared Electro-Optic Modulator Based on Thin Film Lithium Niobate. IEEE Photonics Journal, 2022, 14, 1-6.	2.0	4
41	Azimuth angle orientation by side scattering for side-polishing of photonic crystal fibers. Optics Express, 2017, 25, 32504.	3.4	3
42	Distance-controllable and direction-steerable opto-conveyor for targeting delivery. Photonics Research, 2020, 8, 1124.	7.0	3
43	Tin Disulfide-Coated Microfiber for Humidity Sensing with Fast Response and High Sensitivity. Crystals, 2021, 11, 648.	2.2	2
44	High Light Tuning Efficiency in All Optical Inâ, Seâ, f Coated Micro Knot Resonator Structure. IEEE Access, 2020, 8, 190009-190016.	4.2	1
45	SnSe-Coated Microfiber Resonator for All-Optical Modulation. Nanomaterials, 2022, 12, 694.	4.1	1
46	Correction to "Broadband Light Amplitude Tuning Characteristics of SnSe ₂ Coated Microfiber―[Nov 20 6089-6096]. Journal of Lightwave Technology, 2022, 40, 4058-4058.	4.6	0