
Martin Ott

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/654206/publications.pdf Version: 2024-02-01

Μαρτίνι Οττ

#	Article	IF	CITATIONS
1	Mitochondria, oxidative stress and cell death. Apoptosis: an International Journal on Programmed Cell Death, 2007, 12, 913-922.	2.2	1,674
2	Cytochrome c release from mitochondria proceeds by a two-step process. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 1259-1263.	3.3	873
3	Organization and Regulation of Mitochondrial Protein Synthesis. Annual Review of Biochemistry, 2016, 85, 77-101.	5.0	221
4	Ribosome binding to the Oxa1 complex facilitates co-translational protein insertion in mitochondria. EMBO Journal, 2003, 22, 6448-6457.	3.5	213
5	Co-translational membrane insertion of mitochondrially encoded proteins. Biochimica Et Biophysica Acta - Molecular Cell Research, 2010, 1803, 767-775.	1.9	138
6	Mba1, a membrane-associated ribosome receptor in mitochondria. EMBO Journal, 2006, 25, 1603-1610.	3.5	125
7	Cryo-EM structure of the yeast respiratory supercomplex. Nature Structural and Molecular Biology, 2019, 26, 50-57.	3.6	100
8	Cbp3–Cbp6 interacts with the yeast mitochondrial ribosomal tunnel exit and promotes cytochrome <i>b</i> synthesis and assembly. Journal of Cell Biology, 2011, 193, 1101-1114.	2.3	91
9	Organization of Mitochondrial Gene Expression in Two Distinct Ribosome-Containing Assemblies. Cell Reports, 2015, 10, 843-853.	2.9	86
10	Mitochondrial Translation Efficiency Controls Cytoplasmic Protein Homeostasis. Cell Metabolism, 2018, 27, 1309-1322.e6.	7.2	85
11	Evolution of Mitochondrial Oxa Proteins from Bacterial YidC. Journal of Biological Chemistry, 2005, 280, 13004-13011.	1.6	84
12	Spatial orchestration of mitochondrial translation and OXPHOS complex assembly. Nature Cell Biology, 2018, 20, 528-534.	4.6	84
13	Cofilin1-dependent actin dynamics control DRP1-mediated mitochondrial fission. Cell Death and Disease, 2017, 8, e3063-e3063.	2.7	74
14	The Mitochondrial TOM Complex Is Required for tBid/Bax-induced Cytochrome c Release. Journal of Biological Chemistry, 2007, 282, 27633-27639.	1.6	73
15	The Cbp3–Cbp6 complex coordinates cytochrome <i>b</i> synthesis with <i>bc1</i> complex assembly in yeast mitochondria. Journal of Cell Biology, 2012, 199, 137-150.	2.3	72
16	Respiratory supercomplexes enhance electron transport by decreasing cytochrome <i>c</i> diffusion distance. EMBO Reports, 2020, 21, e51015.	2.0	71
17	Cardiolipin Is Not Required for Bax-mediated Cytochrome c Release from Yeast Mitochondria. Journal of Biological Chemistry, 2004, 279, 1100-1107.	1.6	70
18	Biogenesis of the bc1 Complex of the Mitochondrial Respiratory Chain. Journal of Molecular Biology, 2018, 430, 3892-3905.	2.0	70

MARTIN OTT

#	Article	IF	CITATIONS
19	A mutation in the human CBP4 ortholog UQCC3 impairs complex III assembly, activity and cytochrome b stability. Human Molecular Genetics, 2014, 23, 6356-6365.	1.4	69
20	Mitochondria orchestrate proteostatic and metabolic stress responses. EMBO Reports, 2019, 20, e47865.	2.0	69
21	Assembly factors monitor sequential hemylation of cytochrome <i>b</i> to regulate mitochondrial translation. Journal of Cell Biology, 2014, 205, 511-524.	2.3	65
22	Proteins at the Polypeptide Tunnel Exit of the Yeast Mitochondrial Ribosome. Journal of Biological Chemistry, 2010, 285, 19022-19028.	1.6	62
23	Ribosome-binding Proteins Mdm38 and Mba1 Display Overlapping Functions for Regulation of Mitochondrial Translation. Molecular Biology of the Cell, 2010, 21, 1937-1944.	0.9	56
24	Kinetic coupling of the respiratory chain with ATP synthase, but not proton gradients, drives ATP production in cristae membranes. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 2412-2421.	3.3	52
25	Evolution of YidC/Oxa1/Alb3 insertases: three independent gene duplications followed by functional specialization in bacteria, mitochondria and chloroplasts. Biological Chemistry, 2011, 392, 13-9.	1.2	46
26	Regulatory role of the respiratory supercomplex factors in <i>Saccharomyces cerevisiae</i> . Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E4476-85.	3.3	45
27	The novel component Kgd4 recruits the E3 subunit to the mitochondrial α-ketoglutarate dehydrogenase. Molecular Biology of the Cell, 2014, 25, 3342-3349.	0.9	43
28	Mrpl36 Is Important for Generation of Assembly Competent Proteins during Mitochondrial Translation. Molecular Biology of the Cell, 2009, 20, 2615-2625.	0.9	40
29	The basic machineries for mitochondrial protein quality control. Mitochondrion, 2020, 50, 121-131.	1.6	40
30	Molecular Connectivity of Mitochondrial Gene Expression and OXPHOS Biogenesis. Molecular Cell, 2020, 79, 1051-1065.e10.	4.5	40
31	Structure of the native pyruvate dehydrogenase complex reveals the mechanism of substrate insertion. Nature Communications, 2021, 12, 5277.	5.8	39
32	Extracellular Membrane Vesicles from Lactobacilli Dampen IFN-Î ³ Responses in a Monocyte-Dependent Manner. Scientific Reports, 2019, 9, 17109.	1.6	37
33	The polypeptide tunnel exit of the mitochondrial ribosome is tailored to meet the specific requirements of the organelle. BioEssays, 2010, 32, 1050-1057.	1.2	32
34	The ribosome receptors Mrx15 and Mba1 jointly organize cotranslational insertion and protein biogenesis in mitochondria. Molecular Biology of the Cell, 2018, 29, 2386-2396.	0.9	29
35	Mitochondrial Protein Synthesis: Efficiency and Accuracy. Antioxidants and Redox Signaling, 2013, 19, 1928-1939.	2.5	27
36	Mitochondrial translation and cellular stress response. Cell and Tissue Research, 2017, 367, 21-31.	1.5	27

MARTIN OTT

#	Article	IF	CITATIONS
37	The Membrane Insertase Oxa1 Is Required for Efficient Import of Carrier Proteins into Mitochondria. Journal of Molecular Biology, 2012, 423, 590-599.	2.0	26
38	Sequential Processing of a Mitochondrial Tandem Protein: Insights into Protein Import in Schizosaccharomyces pombe. Eukaryotic Cell, 2006, 5, 997-1006.	3.4	22
39	Molecular Wiring of a Mitochondrial Translational Feedback Loop. Molecular Cell, 2020, 77, 887-900.e5.	4.5	22
40	Aim-less translation: loss of Saccharomyces cerevisiae mitochondrial translation initiation factor mIF3/Aim23 leads to unbalanced protein synthesis. Scientific Reports, 2016, 6, 18749.	1.6	21
41	Timing of dimerization of the bc complex during mitochondrial respiratory chain assembly. Biochimica Et Biophysica Acta - Bioenergetics, 2020, 1861, 148177.	0.5	18
42	Rcf1 Modulates Cytochrome c Oxidase Activity Especially Under Energy-Demanding Conditions. Frontiers in Physiology, 2019, 10, 1555.	1.3	18
43	Structural and functional heterogeneity of cytochrome c oxidase in S. cerevisiae. Biochimica Et Biophysica Acta - Bioenergetics, 2018, 1859, 699-704.	0.5	12
44	A novel system to monitor mitochondrial translation in yeast. Microbial Cell, 2018, 5, 158-164.	1.4	11
45	Regulation of cytochrome c oxidase activity by modulation of the catalytic site. Scientific Reports, 2018, 8, 11397.	1.6	10
46	Membrane-tethering of cytochrome c accelerates regulated cell death in yeast. Cell Death and Disease, 2020, 11, 722.	2.7	10
47	The MIOREX complex - lean management of mitochondrial gene expression. Oncotarget, 2015, 6, 16806-16807.	0.8	9
48	Reaction of S. cerevisiae mitochondria with ligands: Kinetics of CO and O2 binding to flavohemoglobin and cytochrome c oxidase. Biochimica Et Biophysica Acta - Bioenergetics, 2017, 1858, 182-188.	0.5	8
49	Alternative Translation Initiation at a UUG Codon Gives Rise to Two Functional Variants of the Mitochondrial Protein Kgd4. Journal of Molecular Biology, 2019, 431, 1460-1467.	2.0	8
50	Choreography of protein synthesis. Nature, 2016, 533, 472-473.	13.7	6
51	Structural basis for the interaction of the chaperone Cbp3 with newly synthesized cytochrome b during mitochondrial respiratory chain assembly. Journal of Biological Chemistry, 2019, 294, 16663-16671.	1.6	6
52	Oms1 associates with cytochrome <i>c</i> oxidase assembly intermediates to stabilize newly synthesized Cox1. Molecular Biology of the Cell, 2016, 27, 1570-1580.	0.9	4
53	Insertion Defects of Mitochondrially Encoded Proteins Burden the Mitochondrial Quality Control System. Cells, 2018, 7, 172.	1.8	4
54	The Analysis of Yeast Mitochondrial Translation. Methods in Molecular Biology, 2021, 2192, 227-242.	0.4	4

MARTIN OTT

#	Article	IF	CITATIONS
55	A caspase-2-RFXANK interaction and its implication for MHC class II expression. Cell Death and Disease, 2018, 9, 80.	2.7	3
56	Conserved and Organelle-Specific Molecular Mechanisms of Translation in Mitochondria. , 2012, , 401-429.		2
57	Mechanisms and Control of Protein Synthesis in Yeast Mitochondria. , 2013, , 109-131.		1
58	Mapping protein networks in yeast mitochondria using proximity-dependent biotin identification coupled to proteomics. STAR Protocols, 2020, 1, 100219.	0.5	1
59	Incorporation of reporter genes into mitochondrial DNA in budding yeast. STAR Protocols, 2022, 3, 101359.	0.5	1
60	Cbp3–Cbp6 interacts with the yeast mitochondrial ribosomal tunnel exit and promotes cytochrome b synthesis and assembly. Journal of Cell Biology, 2011, 194, 155-155.	2.3	0