Ndolane Sene

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6541800/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	On the modeling and numerical discretizations of a chaotic system via fractional operators with and without singular kernels. Mathematical Sciences, 2023, 17, 517-537.	1.7	5
2	Tangent nonlinear equation in context of fractal fractional operators with nonsingular kernel. Mathematical Sciences, 2022, 16, 121-131.	1.7	11
3	Irreversibility analysis of induced swirl flow inside the pipes of flat-plate solar collector using dual tangential nozzles. International Journal of Low-Carbon Technologies, 2022, 17, 222-232.	2.6	0
4	Using artificial neural network to optimize hydrogen solubility and evaluation of environmental condition effects. International Journal of Low-Carbon Technologies, 2022, 17, 80-89.	2.6	2
5	Fractional Model and Exact Solutions of Convection Flow of an Incompressible Viscous Fluid under the Newtonian Heating and Mass Diffusion. Journal of Mathematics, 2022, 2022, 1-20.	1.0	8
6	A Multiple Fixed Point Result for $ l, , l• , l^ $ -Type Contractions in the Partially Ordered <math xmlns="htt. Journal of Function Spaces, 2022, 2022, 1-10.	0.9	2
7	Heat and Mass Transfer of the Darcy-Forchheimer Casson Hybrid Nanofluid Flow due to an Extending Curved Surface. Journal of Nanomaterials, 2022, 2022, 1-12.	2.7	14
8	Second-grade fluid with Newtonian heating under Caputo fractional derivative: analytical investigations via Laplace transforms. İletişim, Sosyoloji Ve Tarih Araştırmaları Dergisi:, 2022, 2, 13-25.	1.8	21
9	A Novel Fractional-Order System Described by the Caputo Derivative, Its Numerical Discretization, and Qualitative Properties. , 2022, , 205-240.		2
10	Analytical Solutions of a Class of Fluids Models with the Caputo Fractional Derivative. Fractal and Fractional, 2022, 6, 35.	3.3	29
11	Analytical Approximate Solution of the Fractional Order Biological Population Model by Using Natural Transform. Journal of Nanomaterials, 2022, 2022, 1-12.	2.7	4
12	New Iterative Method for Solving a Coupled System of Fractional-Order Drinfeld–Sokolov–Wilson (FDSW) and Fractional Shallow Water (FSW) Equations. Journal of Nanomaterials, 2022, 2022, 1-13.	2.7	2
13	Impact of Ferromagnetic Nanoparticles Submerged in Chemically Reactive Viscoelastic Fluid Transport Influenced by Double Magnetic Dipole. Journal of Nanomaterials, 2022, 2022, 1-12.	2.7	3
14	Analysis of the Influences of Parameters in the Fractional Second-Grade Fluid Dynamics. Mathematics, 2022, 10, 1125.	2.2	26
15	Fundamental Results about the Fractional Integro-Differential Equation Described with Caputo Derivative. Journal of Function Spaces, 2022, 2022, 1-10.	0.9	4
16	Nonlinear Convective SiO2 and TiO2 Hybrid Nanofluid Flow over an Inclined Stretched Surface. Journal of Nanomaterials, 2022, 2022, 1-11.	2.7	2
17	Impacts of Chemical Reaction and Suction/Injection on the Mixed Convective Williamson Fluid past a Penetrable Porous Wedge. Journal of Mathematics, 2022, 2022, 1-10.	1.0	6
18	Analytical investigations of the fractional free convection flow of Brinkman type fluid described by the Caputo fractional derivative. Results in Physics, 2022, 37, 105555.	4.1	11

#	Article	IF	CITATIONS
19	Analysis and Simulation of Fractional Order Smoking Epidemic Model. Computational and Mathematical Methods in Medicine, 2022, 2022, 1-16.	1.3	10
20	Numerical methods applied to a class of SEIR epidemic models described by the Caputo derivative. , 2022, , 23-40.		2
21	Fundamental calculus of the fractional derivative defined with Rabotnov exponential kernel and application to nonlinear dispersive wave model. Journal of Ocean Engineering and Science, 2021, 6, 196-205.	4.3	27
22	Analysis of a fractional-order chaotic system in the context of the Caputo fractional derivative via bifurcation and Lyapunov exponents. Journal of King Saud University - Science, 2021, 33, 101275.	3.5	33
23	Study of a Fractional-Order Chaotic System Represented by the Caputo Operator. Complexity, 2021, 2021, 1-20.	1.6	17
24	A Numerical Algorithm Applied to Free Convection Flows of the Casson Fluid along with Heat and Mass Transfer Described by the Caputo Derivative. Advances in Mathematical Physics, 2021, 2021, 1-11.	0.8	3
25	Analysis of COVIDâ€19 and comorbidity coâ€infection model with optimal control. Optimal Control Applications and Methods, 2021, 42, 1568-1590.	2.1	41
26	Qualitative Analysis of Class of Fractional-Order Chaotic System via Bifurcation and Lyapunov Exponents Notions. Journal of Mathematics, 2021, 2021, 1-18.	1.0	14
27	Stability and Convergence Analysis of Numerical Scheme for the Generalized Fractional Diffusion-Reaction Equation. , 2021, , 1-16.		Ο
28	Fractional diffusion equation described by the Atangana-Baleanu fractional derivative and its approximate solution. Journal of Fractional Calculus and Nonlinear Systems, 2021, 2, 60-75.	1.5	8
29	Introduction to the fractional-order chaotic system under fractional operator in Caputo sense. AEJ - Alexandria Engineering Journal, 2021, 60, 3997-4014.	6.4	28
30	Theory and applications of new fractional-order chaotic system under Caputo operator. International Journal of Optimization and Control: Theories and Applications, 2021, 12, 20-38.	1.7	7
31	Analysis of fractional fishery model with reserve area in the context of time-fractional order derivative. Chaos, Solitons and Fractals, 2020, 140, 110200.	5.1	17
32	On Class of Fractional-Order Chaotic or Hyperchaotic Systems in the Context of the Caputo Fractional-Order Derivative. Journal of Mathematics, 2020, 2020, 1-15.	1.0	10
33	Stability Analysis and Numerical Computation of the Fractional Predator–Prey Model with the Harvesting Rate. Fractal and Fractional, 2020, 4, 35.	3.3	101
34	Novel Approaches for Getting the Solution of the Fractional Black–Scholes Equation Described by Mittag-Leffler Fractional Derivative. Discrete Dynamics in Nature and Society, 2020, 2020, 1-11.	0.9	4
35	Analysis of the Financial Chaotic Model with the Fractional Derivative Operator. Complexity, 2020, 2020, 1-14.	1.6	27
36	Generalized Mittag-Leffler Input Stability of the Fractional-Order Electrical Circuits. IEEE Open Journal of Circuits and Systems, 2020, 1, 233-242.	1.9	6

#	Article	IF	CITATIONS
37	Analysis of a Four-Dimensional Hyperchaotic System Described by the Caputo–Liouville Fractional Derivative. Complexity, 2020, 2020, 1-20.	1.6	12
38	Model of economic growth in the context of fractional derivative. AEJ - Alexandria Engineering Journal, 2020, 59, 4843-4850.	6.4	28
39	Approximate Solutions of the Model Describing Fluid Flow Using Generalized ϕLaplace Transform Method and Heat Balance Integral Method. Axioms, 2020, 9, 123.	1.9	60
40	Fractional diffusion equation with new fractional operator. AEJ - Alexandria Engineering Journal, 2020, 59, 2921-2926.	6.4	16
41	Stability analysis of electrical RLC circuit described by the Caputo-Liouville generalized fractional derivative. AEJ - Alexandria Engineering Journal, 2020, 59, 2083-2090.	6.4	18
42	Second-grade fluid model with Caputo–Liouville generalized fractional derivative. Chaos, Solitons and Fractals, 2020, 133, 109631.	5.1	60
43	Fractional Model for a Class of Diffusion-Reaction Equation Represented by the Fractional-Order Derivative. Fractal and Fractional, 2020, 4, 15.	3.3	10
44	SIR epidemic model with Mittag–Leffler fractional derivative. Chaos, Solitons and Fractals, 2020, 137, 109833.	5.1	104
45	Fractional Optimal Economic Control Problem Described by the Generalized Fractional Order Derivative. Advances in Intelligent Systems and Computing, 2020, , 36-48.	0.6	5
46	Analysis of the stochastic model for predicting the novel coronavirus disease. Advances in Difference Equations, 2020, 2020, 568.	3.5	32
47	Fractional SIRI Model with Delay in Context of the Generalized Liouville–Caputo Fractional Derivative. , 2020, , 107-125.		5
48	Nonlinear sub-diffusion and nonlinear sub-diffusion dispersion equations and their proposed solutions. Applied Mathematics and Nonlinear Sciences, 2020, 5, 221-236.	1.6	4
49	Fractional input stability and its application to neural network. Discrete and Continuous Dynamical Systems - Series S, 2020, 13, 853-865.	1.1	7
50	Mittag-Leffler input stability of fractional differential equations and its applications. Discrete and Continuous Dynamical Systems - Series S, 2020, 13, 867-880.	1.1	11
51	Fractional Mass-Spring-Damper System Described by Generalized Fractional Order Derivatives. Fractal and Fractional, 2019, 3, 39.	3.3	14
52	Analysis of the fractional diffusion equations described by Atangana-Baleanu-Caputo fractional derivative. Chaos, Solitons and Fractals, 2019, 127, 158-164.	5.1	41
53	On Dynamic Systems in the Frame of Singular Function Dependent Kernel Fractional Derivatives. Mathematics, 2019, 7, 946.	2.2	18
54	Analytical solutions of electrical circuits considering certain generalized fractional derivatives. European Physical Journal Plus, 2019, 134, 1.	2.6	35

#	Article	IF	CITATIONS
55	Black–Scholes option pricing equations described by the Caputo generalized fractional derivative. Chaos, Solitons and Fractals, 2019, 125, 108-118.	5.1	39
56	Integral Balance Methods for Stokes' First Equation Described by the Left Generalized Fractional Derivative. Physics, 2019, 1, 154-166.	1.4	22
57	Analytical solutions and numerical schemes of certain generalized fractional diffusion models. European Physical Journal Plus, 2019, 134, 1.	2.6	28
58	Generalized Mittag-Leffler Input Stability of the Fractional Differential Equations. Symmetry, 2019, 11, 608.	2.2	30
59	Homotopy Perturbation ϕLaplace Transform Method and Its Application to the Fractional Diffusion Equation and the Fractional Diffusion-Reaction Equation. Fractal and Fractional, 2019, 3, 14.	3.3	34
60	Analytical solutions of Hristov diffusion equations with non-singular fractional derivatives. Chaos, 2019, 29, 023112.	2.5	27
61	Integral-Balance Methods for the Fractional Diffusion Equation Described by the Caputo-Generalized Fractional Derivative. , 2019, , 83-104.		3
62	Stability analysis of the generalized fractional differential equations with and without exogenous inputs. Journal of Nonlinear Science and Applications, 2019, 12, 562-572.	1.0	42
63	Fractional input stability for electrical circuits described by the Riemann-Liouville and the Caputo fractional derivatives. AIMS Mathematics, 2019, 4, 147-165.	1.6	16
64	Stokes' first problem for heated flat plate with Atangana–Baleanu fractional derivative. Chaos, Solitons and Fractals, 2018, 117, 68-75.	5.1	42
65	Lyapunov Characterization of the Fractional Nonlinear Systems with Exogenous Input. Fractal and Fractional, 2018, 2, 17.	3.3	13
66	Exponential form for Lyapunov function and stability analysis of the fractional differential equations. Journal of Mathematics and Computer Science, 2018, 18, 388-397.	1.0	25
67	Fractional diffusion equation described by the Atangana-Baleanu fractional derivative and its approximate solution. Discrete and Continuous Dynamical Systems - Series S, 2018, .	1.1	0
68	Relaxed conditions for the stability of switched nonlinear triangular systems under arbitrary switching. Systems and Control Letters, 2015, 84, 52-56.	2.3	7
69	Global asymptotic stability of the fractional differential equations. Journal of Nonlinear Science and Applications, 0, , 171-175.	1.0	14
70	A new approach for the solutions of the fractional generalized Casson fluid model described by Caputo fractional operator. Advances in the Theory of Nonlinear Analysis and Its Applications, 0, , .	0.7	1