Monica Terracciano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/654176/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Diatomite biosilica nanocarriers for siRNA transport inside cancer cells. Biochimica Et Biophysica Acta - General Subjects, 2014, 1840, 3393-3403.	2.4	88
2	Surface bioengineering of diatomite based nanovectors for efficient intracellular uptake and drug delivery. Nanoscale, 2015, 7, 20063-20074.	5.6	81
3	Diatomite silica nanoparticles for drug delivery. Nanoscale Research Letters, 2014, 9, 329.	5.7	80
4	Diatoms Green Nanotechnology for Biosilica-Based Drug Delivery Systems. Pharmaceutics, 2018, 10, 242.	4.5	66
5	Aminosilane functionalizations of mesoporous oxidized silicon for oligonucleotide synthesis and detection. Journal of the Royal Society Interface, 2013, 10, 20130160.	3.4	60
6	Porous Silicon Optical Devices: Recent Advances in Biosensing Applications. Sensors, 2021, 21, 1336.	3.8	55
7	Optical characterization of aminosilane-modified silicon dioxide surface for biosensing. Journal of the European Optical Society-Rapid Publications, 0, 8, .	1.9	54
8	Synthetic vs Natural: Diatoms Bioderived Porous Materials for the Next Generation of Healthcare Nanodevices. Advanced Healthcare Materials, 2017, 6, 1601125.	7.6	47
9	Internalization kinetics and cytoplasmic localization of functionalized diatomite nanoparticles in cancer cells by Raman imaging. Journal of Biophotonics, 2018, 11, e201700207.	2.3	41
10	Solid phase synthesis of a thrombin binding aptamer on macroporous silica for label free optical quantification of thrombin. RSC Advances, 2016, 6, 86762-86769.	3.6	39
11	Nanostructured Biosilica of Diatoms: From Water World to Biomedical Applications. Applied Sciences (Switzerland), 2020, 10, 6811.	2.5	39
12	Chemical modification of TiO2 nanotube arrays for label-free optical biosensing applications. Applied Surface Science, 2017, 419, 235-240.	6.1	38
13	Nanoparticle-based strategy for personalized B-cell lymphoma therapy. International Journal of Nanomedicine, 2016, Volume 11, 6089-6101.	6.7	35
14	Bioengineered Silicon Diatoms: Adding Photonic Features to a Nanostructured Semiconductive Material for Biomolecular Sensing. Nanoscale Research Letters, 2016, 11, 405.	5.7	32
15	SERS Quantification of Galunisertib Delivery in Colorectal Cancer Cells by Plasmonicâ€Assisted Diatomite Nanoparticles. Small, 2021, 17, e2101711.	10.0	32
16	Small Synthetic Peptides Bioconjugated to Hybrid Gold Nanoparticles Destroy Potentially Deadly Bacteria at Submicromolar Concentrations. Bioconjugate Chemistry, 2018, 29, 3877-3885.	3.6	31
17	Gold decorated porous biosilica nanodevices for advanced medicine. Nanotechnology, 2018, 29, 235601.	2.6	29
18	Porous Silicon-Based Aptasensors: The Next Generation of Label-Free Devices for Health Monitoring. Molecules, 2019, 24, 2216.	3.8	25

Monica Terracciano

#	Article	IF	CITATIONS
19	Photoluminescence of Graphene Oxide Infiltrated into Mesoporous Silicon. Journal of Physical Chemistry C, 2014, 118, 27301-27307.	3.1	24
20	Polymeric Microneedle Arrays: Versatile Tools for an Innovative Approach to Drug Administration. Advanced Therapeutics, 2019, 2, 1900036.	3.2	22
21	Quantification and Reduction of the Residual Chemical Reactivity of Passivated Biodegradable Porous Silicon for Drug Delivery Applications. Silicon, 2018, 10, 349-359.	3.3	17
22	Photoluminescence enhancement of graphene oxide emission by infiltration in an aperiodic porous silicon multilayer. Optics Express, 2016, 24, 24413.	3.4	16
23	In Vivo Toxicity Assessment of Hybrid Diatomite Nanovectors Using <i>Hydra vulgaris</i> as a Model System. Advanced Biology, 2019, 3, e1800247.	3.0	15
24	A new strategy for label-free detection of lymphoma cancer cells. Biomedical Optics Express, 2015, 6, 1353.	2.9	13
25	PNA-Based Graphene Oxide/Porous Silicon Hybrid Biosensor: Towards a Label-Free Optical Assay for Brugada Syndrome. Nanomaterials, 2020, 10, 2233.	4.1	10
26	Timeâ€gated luminescence imaging of positively charged poly―l―lysineâ€coated highly microporous silicon nanoparticles in living Hydra polyp. Journal of Biophotonics, 2020, 13, e202000272.	2.3	10
27	Synthesis of mixed-sequence oligonucleotides on mesoporous silicon: chemical strategies and material stability. Nanoscale Research Letters, 2014, 9, 317.	5.7	9
28	Bioconjugation of a PNA Probe to Zinc Oxide Nanowires for Label-Free Sensing. Nanomaterials, 2021, 11, 523.	4.1	9
29	Exploring the Parallel G-Quadruplex Nucleic Acid World: A Spectroscopic and Computational Investigation on the Binding of the c-myc Oncogene NHE III1 Region by the Phytochemical Polydatin. Molecules, 2022, 27, 2997.	3.8	9
30	Nanogravimetric and Optical Characterizations of Thrombin Interaction with a Self-Assembled Thiolated Aptamer. Journal of Sensors, 2016, 2016, 1-8.	1.1	8
31	Toward Multi-Parametric Porous Silicon Transducers Based on Covalent Grafting of Graphene Oxide for Biosensing Applications. Frontiers in Chemistry, 2018, 6, 583.	3.6	8
32	π–π stacked DNA G-wire nanostructures formed by a short G-rich oligonucleotide containing a 3′–3′ inversion of polarity site. Organic Chemistry Frontiers, 2020, 7, 2187-2195.	4.5	8
33	Photoemissive properties and stability of undecylenic acid-modified porous silicon nanoparticles in physiological medium. Applied Physics Letters, 2019, 114, .	3.3	6
34	Probing the DNA Reactivity and the Anticancer Properties of a Novel Tubercidin-Pt(II) Complex. Pharmaceutics, 2020, 12, 627.	4.5	6
35	Covalent grafting of graphene oxide on functionalized macroporous silicon. Open Material Sciences, 2018, 4, 15-22.	0.8	5
36	Synthesis and Surface Modification of Nanostructured F-Doped ZnO: Toward a Transducer for Label-Free Optical Biosensing. Applied Sciences (Switzerland), 2019, 9, 3380.	2.5	5

Monica Terracciano

#	Article	IF	CITATIONS
37	Antiproliferative Activity of Mycalin A and Its Analogues on Human Skin Melanoma and Human Cervical Cancer Cells. Marine Drugs, 2020, 18, 402.	4.6	5
38	Hybrid Organic/Inorganic Nanomaterials for Biochemical Sensing. Lecture Notes in Electrical Engineering, 2021, , 93-99.	0.4	4
39	Probing the Ca2+ mobilizing properties on primary cortical neurons of a new stable cADPR mimic. Bioorganic Chemistry, 2021, 117, 105401.	4.1	3
40	A silicon-based peptide biosensor for label-free detection of cancer cells. , 2015, , .		2
41	Microneedles Drug Delivery: Polymeric Microneedle Arrays: Versatile Tools for an Innovative Approach to Drug Administration (Adv. Therap. 8/2019). Advanced Therapeutics, 2019, 2, 1970018.	3.2	2
42	CHAPTER 9. Diatoms: A Natural Source of Nanostructured Silica for Drug Delivery. RSC Nanoscience and Nanotechnology, 0, , 201-218.	0.2	2
43	O6-[(2″,3″-O-Isopropylidene-5″-O-tbutyldimethylsilyl)pentyl]-5′-O-tbutyldiphenylsilyl-2′,3′-O-isop MolBank, 2022, 2022, M1345.	ropyliden .5	einosine. 2
44	Natural and synthetic nanostructured materials for biomedical applications. , 2015, , .		1
45	Diatomite nanoparticles as potential drug delivery systems. , 2015, , .		1
46	5′-Chloro-5′-deoxy-2′,3′-O-isopropylidene-6-fluoro nebularine. MolBank, 2019, 2019, M1097.	0.5	1
47	Bioconjugation of Peptides to Hybrid Gold Nanoparticles. Methods in Molecular Biology, 2021, 2355, 105-115.	0.9	1
48	Diatomite-based nanoparticles: Fabrication strategies for medical applications. , 2022, , 427-446.		1
49	Aminosilane-modified mesoporous oxidized silicon for in situ oligonucleotides synthesis and detection. , 2014, , .		0
50	Bioengineered Surfaces for Real-Time Label-Free Detection of Cancer Cells. , 0, , .		0
51	In Vivo Toxicity: In Vivo Toxicity Assessment of Hybrid Diatomite Nanovectors Using <i>Hydra vulgaris</i> as a Model System (Adv. Biosys. 4/2019). Advanced Biology, 2019, 3, 1970042.	3.0	0
52	SERS Quantification of Galunisertib Delivery in Colorectal Cancer Cells by Plasmonicâ€Assisted Diatomite Nanoparticles (Small 34/2021). Small, 2021, 17, 2170178.	10.0	0
53	Diatomite nanovectors uptake in cancer cells: a Raman imaging study. , 2018, , .		0
54	Design and Synthesis of a cADPR Mimic as a Novel Tool for Monitoring the Intracellular Ca2+ Concentration. Proceedings (mdpi), 2020, 79, .	0.2	0