
Edward R Atwill

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6541748/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Detection and analysis of indicator and pathogenic bacteria in conventional and organic fruits and vegetables sold in retail markets. Food Quality and Safety, 2022, 6, .	1.8	10
2	Dynamic changes in fecal bacterial microbiota of dairy cattle across the production line. BMC Microbiology, 2022, 22, 132.	3.3	7
3	Bacterial pathogens and factors associated with <i>Salmonella</i> contamination in hybrid red tilapia (<i>Oreochromis</i> spp.) cultivated in a cage culture system. Food Quality and Safety, 2022, 6, .	1.8	3
4	Dairy management practices associated with multi-drug resistant fecal commensals and <i>Salmonella</i> in cull cows: a machine learning approach. PeerJ, 2021, 9, e11732.	2.0	2
5	Bacterial diversity and potential risk factors associated with <i>Salmonella</i> contamination of seafood products sold in retail markets in Bangkok, Thailand. PeerJ, 2021, 9, e12694.	2.0	11
6	Prevalence and Genotypes of Cryptosporidium in Wildlife Populations Co-Located in a Protected Watershed in the Pacific Northwest, 2013 to 2016. Microorganisms, 2020, 8, 914.	3.6	7
7	An Insight into Surface Topographical Parameters and Bacterial Adhesion: A Case Study of Listeria monocytogenes Scott A Attachment on 304 Stainless Steel. Journal of Food Protection, 2020, 83, 426-433.	1.7	3
8	Bayesian estimation of diagnostic accuracy of fecal culture and PCR-based tests for the detection of <i>Salmonella enterica</i> in California cull dairy cattle. PeerJ, 2020, 8, e8310.	2.0	4
9	Statewide Cross-Sectional Survey of Cryptosporidium and Giardia in California Cow-Calf Herds. Rangeland Ecology and Management, 2019, 72, 461-466.	2.3	1
10	Modelling of Indicator Escherichia coli Contamination in Sentinel Oysters and Estuarine Water. International Journal of Environmental Research and Public Health, 2019, 16, 1971.	2.6	7
11	Experimental In-Field Transfer and Survival of Escherichia coli from Animal Feces to Romaine Lettuce in Salinas Valley, California. Microorganisms, 2019, 7, 408.	3.6	22
12	Microbiological safety of popular recreation swimming sites in Central California. Environmental Monitoring and Assessment, 2019, 191, 456.	2.7	9
13	Affiliation and disease risk: social networks mediate gut microbial transmission among rhesus macaques. Animal Behaviour, 2019, 151, 131-143.	1.9	28
14	Microbiological Contamination of Strawberries from U-Pick Farms in Guangzhou, China. International Journal of Environmental Research and Public Health, 2019, 16, 4910.	2.6	9
15	Assessing Transmission of Antimicrobial-Resistant Escherichia coli in Wild Giraffe Contact Networks. Applied and Environmental Microbiology, 2019, 85, .	3.1	9
16	Association between herd management practices and antimicrobial resistance in Salmonella spp. from cull dairy cattle in Central California. PeerJ, 2019, 7, e6546.	2.0	12
17	Environmental inactivation and irrigation-mediated regrowth of <i>Escherichia coli</i> O157:H7 on romaine lettuce when inoculated in a fecal slurry matrix. PeerJ, 2019, 7, e6591.	2.0	9
18	Spatial and temporal variability of bacterial indicators and pathogens in six California reservoirs during extreme drought. Water Research, 2018, 129, 436-446.	11.3	21

Edward R Atwill

#	Article	IF	CITATIONS
19	Spatiotemporal Variability in Microbial Quality of Western US Agricultural Water Supplies: A Multistate Study. Journal of Environmental Quality, 2018, 47, 939-948.	2.0	24
20	Comparative Pathogenicity of Wildlife and Bovine Escherichia coli O157:H7 Strains in Experimentally Inoculated Neonatal Jersey Calves. Veterinary Sciences, 2018, 5, 88.	1.7	1
21	Assessment of Bacterial Accumulation and Environmental Factors in Sentinel Oysters and Estuarine Water Quality from the Phang Nga Estuary Area in Thailand. International Journal of Environmental Research and Public Health, 2018, 15, 1970.	2.6	18
22	Prevalence and Genomic Characterization of Escherichia coli O157:H7 in Cow-Calf Herds throughout California. Applied and Environmental Microbiology, 2017, 83, .	3.1	14
23	Monitoring bacterial indicators of water quality in a tidally influenced delta: A Sisyphean pursuit. Science of the Total Environment, 2017, 578, 346-356.	8.0	16
24	Inactivation of Escherichia coli O157:H7 on Romaine Lettuce When Inoculated in a Fecal Slurry Matrix. Journal of Food Protection, 2017, 80, 792-798.	1.7	11
25	Quantitative Shedding of Multiple Genotypes of Cryptosporidium and Giardia by Deer Mice (Peromyscus maniculatus) in a Major Agricultural Region on the California Central Coast. Journal of Food Protection, 2017, 80, 819-828.	1.7	11
26	Multistate Evaluation of Microbial Water and Sediment Quality from Agricultural Recovery Basins. Journal of Environmental Quality, 2016, 45, 657-665.	2.0	13
27	Transfer of Escherichia coliO157:H7 from Simulated Wildlife Scat onto Romaine Lettuce during Foliar Irrigation. Journal of Food Protection, 2015, 78, 240-247.	1.7	57
28	Cross-Sectional Survey of Indicator and Pathogenic Bacteria on Vegetables Sold from Asian Vendors at Farmers' Markets in Northern California. Journal of Food Protection, 2015, 78, 602-608.	1.7	19
29	Cryptosporidium rubeyi n. sp. (Apicomplexa: Cryptosporidiidae) in multiple Spermophilus ground squirrel species. International Journal for Parasitology: Parasites and Wildlife, 2015, 4, 343-350.	1.5	34
30	Comanaging fresh produce for nature conservation and food safety. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 11126-11131.	7.1	79
31	Elevation and vegetation determine Cryptosporidium oocyst shedding by yellow-bellied marmots (Marmota flaviventris) in the Sierra Nevada Mountains. International Journal for Parasitology: Parasites and Wildlife, 2015, 4, 171-177.	1.5	7
32	Quantifying the Sensitivity of Scent Detection Dogs To Identify Fecal Contamination on Raw Produce. Journal of Food Protection, 2014, 77, 6-14.	1.7	11
33	Linking social and pathogen transmission networks using microbial genetics in giraffe (<i><scp>G</scp>iraffa camelopardalis</i>). Journal of Animal Ecology, 2014, 83, 406-414.	2.8	177
34	Quantifying microbe transmission networks for wild and domestic ungulates in Kenya. Biological Conservation, 2014, 169, 136-146.	4.1	66
35	Network structure and prevalence of Cryptosporidium in Belding's ground squirrels. Behavioral Ecology and Sociobiology, 2013, 67, 1951-1959.	1.4	52
36	Occurrence of generic Escherichia coli, E. coli O157 and Salmonella spp. in water and sediment from leafy green produce farms and streams on the Central California coast. International Journal of Food Microbiology, 2013, 165, 65-76.	4.7	138

EDWARD R ATWILL

#	Article	IF	CITATIONS
37	Fecal Shedding of Zoonotic Food-Borne Pathogens by Wild Rodents in a Major Agricultural Region of the Central California Coast. Applied and Environmental Microbiology, 2013, 79, 6337-6344.	3.1	73
38	Development of a Robust Method for Isolation of Shiga Toxin-Positive Escherichia coli (STEC) from Fecal, Plant, Soil and Water Samples from a Leafy Greens Production Region in California. PLoS ONE, 2013, 8, e65716.	2.5	114
39	Water Quality Conditions Associated with Cattle Grazing and Recreation on National Forest Lands. PLoS ONE, 2013, 8, e68127.	2.5	40
40	Spatial and Temporal Dynamics of Fecal Coliform and <i>Escherichia coli</i> Associated with Suspended Solids and Water within Five Northern California Estuaries. Journal of Environmental Quality, 2013, 42, 229-238.	2.0	18
41	Analysis of matrix effects critical to microbial transport in organic wasteâ€affected soils across laboratory and field scales. Water Resources Research, 2012, 48, .	4.2	16
42	Management of Microbial Contamination in Storm Runoff from California Coastal Dairy Pastures. Journal of Environmental Quality, 2010, 39, 1782-1789.	2.0	10
43	Multiple Unique <i>Cryptosporidium</i> Isolates from Three Species of Ground Squirrels () Tj ETQq1 1 0.784314 Environmental Microbiology, 2010, 76, 8269-8276.	rgBT /Ove 3.1	rlock 10 Tf 5 17
44	Effect of Daily Temperature Fluctuation during the Cool Season on the Infectivity of <i>Cryptosporidium parvum</i> . Applied and Environmental Microbiology, 2010, 76, 989-993.	3.1	17
45	Longitudinal prevalence and molecular typing of Escherichia coli O157:H7 by use of multiple-locus variable-number tandem-repeat analysis and pulsed-field gel electrophoresis in fecal samples collected from a range-based herd of beef cattle in California. American Journal of Veterinary Research, 2010, 71, 1339-1347.	0.6	18
46	<i>Escherichia coli</i> O157:H7 in Feral Swine near Spinach Fields and Cattle, Central California Coast1. Emerging Infectious Diseases, 2007, 13, 1908-1911.	4.3	378
47	Efficacy of Natural Grassland Buffers for Removal of Cryptosporidium parvum in Rangeland Runoff. Journal of Food Protection, 2006, 69, 177-184.	1.7	34
48	Environmental Load of Cryptosporidium parvum Oocysts from Cattle Manure in Feedlots from the Central and Western United States. Journal of Environmental Quality, 2006, 35, 200-206.	2.0	31
49	Seasonal Temperature Fluctuations Induces Rapid Inactivation ofCryptosporidium parvum. Environmental Science & Technology, 2005, 39, 4484-4489.	10.0	24
50	Seasonal Shedding of Multiple Cryptosporidium Genotypes in California Ground Squirrels () Tj ETQq0 0 0 rgBT /O	verlock 10) Tf 50 222 Ti
51	Efficacy of Vegetated Buffer Strips for Retaining <i>Cryptosporidium parvum</i> . Journal of Environmental Quality, 2004, 33, 2243-2251.	2.0	47
52	Transport of <i>Cryptosporidium parvum</i> Oocysts through Vegetated Buffer Strips and Estimated Filtration Efficiency. Applied and Environmental Microbiology, 2002, 68, 5517-5527.	3.1	74
53	Quantitative Shedding of Two Genotypes of Cryptosporidium parvum in California Ground Squirrels () Tj ETQq1 1	l 0,784314 3.1	1 rgBT /Overl
54	Watershed research examines rangeland management effects on water quality. California Agriculture, 2001, 55, 64-71.	0.8	12

#	Article	IF	CITATIONS
55	Comparison of Sensitivity of Immunofluorescent Microscopy to That of a Combination of Immunofluorescent Microscopy and Immunomagnetic Separation for Detection of <i>Cryptosporidium parvum</i> Oocysts in Adult Bovine Feces. Applied and Environmental Microbiology, 1999, 65, 3236-3239.	3.1	41
56	DNA Sequence Similarity between California Isolates of Cryptosporidium parvum. Applied and Environmental Microbiology, 1998, 64, 1584-1586.	3.1	12