Yi-Xin Zhao

List of Publications by Citations

Source: https://exaly.com/author-pdf/6541511/yi-xin-zhao-publications-by-citations.pdf

Version: 2024-04-11

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

61 118 199 14,732 h-index g-index citations papers 17,378 11 223 7.42 L-index ext. citations avg, IF ext. papers

#	Paper	IF	Citations
199	Organic-inorganic hybrid lead halide perovskites for optoelectronic and electronic applications. <i>Chemical Society Reviews</i> , 2016 , 45, 655-89	58.5	1049
198	Plasmonic Cu(2-x)S nanocrystals: optical and structural properties of copper-deficient copper(I) sulfides. <i>Journal of the American Chemical Society</i> , 2009 , 131, 4253-61	16.4	785
197	Thermodynamically stabilized ECsPbI-based perovskite solar cells with efficiencies >18. <i>Science</i> , 2019 , 365, 591-595	33.3	644
196	CH3NH3Cl-Assisted One-Step Solution Growth of CH3NH3PbI3: Structure, Charge-Carrier Dynamics, and Photovoltaic Properties of Perovskite Solar Cells. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 9412-9418	3.8	461
195	Bication lead iodide 2D perovskite component to stabilize inorganic EcsPbI perovskite phase for high-efficiency solar cells. <i>Science Advances</i> , 2017 , 3, e1700841	14.3	450
194	Bifunctional Stabilization of All-Inorganic EcsPbI Perovskite for 17% Efficiency Photovoltaics. <i>Journal of the American Chemical Society</i> , 2018 , 140, 12345-12348	16.4	434
193	Femtosecond time-resolved transient absorption spectroscopy of CH3NH3PbI3 perovskite films: evidence for passivation effect of PbI2. <i>Journal of the American Chemical Society</i> , 2014 , 136, 12205-8	16.4	417
192	Facile fabrication of large-grain CH3NH3PbI3-xBrx films for high-efficiency solar cells via CH3NH3Br-selective Ostwald ripening. <i>Nature Communications</i> , 2016 , 7, 12305	17.4	358
191	TiO2 nanoparticles as functional building blocks. <i>Chemical Reviews</i> , 2014 , 114, 9283-318	68.1	340
190	Chemical stability and instability of inorganic halide perovskites. <i>Energy and Environmental Science</i> , 2019 , 12, 1495-1511	35.4	335
189	Development of plasmonic semiconductor nanomaterials with copper chalcogenides for a future with sustainable energy materials. <i>Energy and Environmental Science</i> , 2012 , 5, 5564-5576	35.4	296
188	The Role of Dimethylammonium Iodide in CsPbI Perovskite Fabrication: Additive or Dopant?. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 16691-16696	16.4	264
187	Improving the efficiency of water splitting in dye-sensitized solar cells by using a biomimetic electron transfer mediator. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2012 , 109, 15612-6	11.5	260
186	Charge Transport and Recombination in Perovskite (CH3NH3)PbI3 Sensitized TiO2 Solar Cells. Journal of Physical Chemistry Letters, 2013 , 4, 2880-2884	6.4	255
185	A High Yield Synthesis of Ligand-Free Iridium Oxide Nanoparticles with High Electrocatalytic Activity. <i>Journal of Physical Chemistry Letters</i> , 2011 , 2, 402-406	6.4	250
184	Solid-State Mesostructured Perovskite CH3NH3PbI3 Solar Cells: Charge Transport, Recombination, and Diffusion Length. <i>Journal of Physical Chemistry Letters</i> , 2014 , 5, 490-4	6.4	244
183	Controllable Sequential Deposition of Planar CHNHPblIPerovskite Films via Adjustable Volume Expansion. <i>Nano Letters</i> , 2015 , 15, 3959-63	11.5	217

(2017-2016)

Identification and characterization of the intermediate phase in hybrid organic-inorganic MAPbI3 perovskite. <i>Dalton Transactions</i> , 2016 , 45, 3806-13	4.3	212
Efficient EcsPbI3 Photovoltaics with Surface Terminated Organic Cations. <i>Joule</i> , 2018 , 2, 2065-2075	27.8	210
Solution Chemistry Engineering toward High-Efficiency Perovskite Solar Cells. <i>Journal of Physical Chemistry Letters</i> , 2014 , 5, 4175-86	6.4	209
Efficient planar perovskite solar cells based on 1.8 eV band gap CH3NH3PbI2Br nanosheets via thermal decomposition. <i>Journal of the American Chemical Society</i> , 2014 , 136, 12241-4	16.4	203
Carbon quantum dots decorated Bi2WO6 nanocomposite with enhanced photocatalytic oxidation activity for VOCs. <i>Applied Catalysis B: Environmental</i> , 2016 , 193, 16-21	21.8	198
Amorphous TiO2 Buffer Layer Boosts Efficiency of Quantum Dot Sensitized Solar Cells to over 9%. <i>Chemistry of Materials</i> , 2015 , 27, 8398-8405	9.6	184
Visible Light Assisted Heterogeneous Fenton-Like Degradation of Organic Pollutant via FeOOH/Mesoporous Carbon Composites. <i>Environmental Science & Environmental Science & Env</i>	o ^{10.3}	167
Resistance and polarization losses in aqueous bufferthembrane electrolytes for water-splitting photoelectrochemical cells. <i>Energy and Environmental Science</i> , 2012 , 5, 7582	35.4	166
Carbon Counter-Electrode-Based Quantum-Dot-Sensitized Solar Cells with Certified Efficiency Exceeding 11. <i>Journal of Physical Chemistry Letters</i> , 2016 , 7, 3103-11	6.4	154
Substrate-controlled band positions in CHNHPbliperovskite films. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 22122-30	3.6	152
The Effects of Sintering on the Photocatalytic Activity of N-Doped TiO2 Nanoparticles. <i>Chemistry of Materials</i> , 2008 , 20, 2629-2636	9.6	145
FeOOH quantum dots coupled g-C3N4 for visible light driving photo- Fenton degradation of organic pollutants. <i>Applied Catalysis B: Environmental</i> , 2018 , 237, 513-520	21.8	143
Optical bleaching of perovskite (CH3NH3)PbI3 through room-temperature phase transformation induced by ammonia. <i>Chemical Communications</i> , 2014 , 50, 1605-7	5.8	141
A controllable fabrication of grain boundary PbI2 nanoplates passivated lead halide perovskites for high performance solar cells. <i>Nano Energy</i> , 2016 , 26, 50-56	17.1	138
Metal ions optical sensing by semiconductor quantum dots. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 595-613	7.1	134
Effective hole extraction using MoOx-Al contact in perovskite CH3NH3PbI3 solar cells. <i>Applied Physics Letters</i> , 2014 , 104, 213906	3.4	126
A Facile Low Temperature Fabrication of High Performance CsPbI2Br All-Inorganic Perovskite Solar Cells. <i>Solar Rrl</i> , 2018 , 2, 1700180	7.1	124
Mixed cation hybrid lead halide perovskites with enhanced performance and stability. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 11450-11461	13	123
	Perovskite. <i>Dalton Transactions</i> , 2016 , 45, 3806-13 Efficient EcsPb13 Photovoltaics with Surface Terminated Organic Cations. <i>Joule</i> , 2018 , 2, 2065-2075 Solution Chemistry Engineering toward High-Efficiency Perovskite Solar Cells. <i>Journal of Physical Chemistry Letters</i> , 2014 , 5, 4175-86 Efficient planar perovskite solar cells based on 1.8 eV band gap CH3NH3Pb12Br nanosheets via thermal decomposition. <i>Journal of the American Chemical Society</i> , 2014 , 136, 12241-4 Carbon quantum dots decorated Bi2WO6 nanocomposite with enhanced photocatalytic oxidation activity for VOCs. <i>Applied Catalysis B: Environmental</i> , 2016 , 193, 16-21 Amorphous TiO2 Buffer Layer Boosts Efficiency of Quantum Dot Sensitized Solar Cells to over 9%. <i>Chemistry of Materials</i> , 2015 , 27, 8398-8405 Visible Light Assisted Heterogeneous Fenton-Like Degradation of Organic Pollutant via #FeOOH/Mesoporous Carbon Composites. <i>Environmental Science & Description</i> , 2017 , 51, 3993-400 Resistance and polarization losses in aqueous bufferthembrane electrolytes for water-splitting photoelectrochemical cells. <i>Energy and Environmental Science</i> , 2012 , 5, 7582 Carbon Counter-Electrode-Based Quantum-Dot-Sensitized Solar Cells with Certified Efficiency Exceeding 11. <i>Journal of Physical Chemistry Letters</i> , 2016 , 7, 3103-11 Substrate-controlled band positions in CHBIHBbI[berovskite Films. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 22122-30 The Effects of Sintering on the Photocatalytic Activity of N-Doped TiO2 Nanoparticles. <i>Chemistry of Materials</i> , 2008 , 20, 2629-2636 FeOOH quantum dots coupled g-C3N4 for visible light driving photo- Fenton degradation of organic pollutants. <i>Applied Catalysis B: Environmental</i> , 2018 , 237, 513-520 Optical bleaching of perovskite (CH3NH3)PbI3 through room-temperature phase transformation induced by ammonia. <i>Chemical Communications</i> , 2014 , 50, 1605-7 A controllable fabrication of grain boundary PbI2 nanoplates passivated lead halide perovskites for high performance solar cells. <i>Nano </i>	perovskite. Dalton Transactions, 2016, 45, 3806-13 Efficient FCsPb13 Photovoltaics with Surface Terminated Organic Cations. Joule, 2018, 2, 2065-2075 27.8 Solution Chemistry Engineering toward High-Efficiency Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2014, 5, 4175-86 Efficient planar perovskite solar cells based on 1.3 eV band gap CH3NH3Pb12Br nanosheets via thermal decomposition. Journal of the American Chemical Society, 2014, 136, 12241-4 Carbon quantum dots decorated Bi2WO6 nanocomposite with enhanced photocatalytic oxidation activity for VOCs. Applied Catalysis B: Environmental, 2016, 193, 16-21 Amorphous TiO2 Buffer Layer Boosts Efficiency of Quantum Dot Sensitized Solar Cells to over 9%. Chemistry of Materials, 2015, 27, 8398-8405 Visible Light Assisted Heterogeneous Fenton-Like Degradation of Organic Pollutant via FeOOH/Mesoporous Carbon Composites. Environmental Science & Degradation of Organic Pollutant via FeOOH/Mesoporous Carbon Composites. Environmental Science & Degradation of Organic Pollutant via FeOOH/Mesoporous Carbon Composites. Environmental Science, 2012, 5, 7582 35-4 Carbon Counter-Electrode-Based Quantum-Dot-Sensitized Solar Cells with Certified Efficiency Exceeding 11. Journal of Physical Chemistry Letters, 2016, 7, 3103-11 64. Substrate-controlled band positions in CHBHPbIDerovskite films. Physical Chemistry Chemical Physics, 2014, 16, 22122-30 The Effects of Sintering on the Photocatalytic Activity of N-Doped TiO2 Nanoparticles. Chemistry of Materials, 2008, 20, 2629-2636 FeOOH quantum dots coupled g-C3N4 for visible light driving photo-Fenton degradation of organic pollutants. Applied Catalysis B: Environmental, 2018, 237, 513-520 Optical bleaching of perovskite (CH3NH3)Pb13 through room-temperature phase transformation induced by ammonia. Chemical Communications, 2014, 50, 1605-7 A controllable fabrication of grain boundary Pb12 nanoplates passivated lead halide perovskites for high performance solar cells. Nano Energy, 2016, 26, 50-56 Metal ions o

164	Growth control of compact CH3NH3PbI3 thin films via enhanced solid-state precursor reaction for efficient planar perovskite solar cells. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 9249-9256	13	118
163	Non-Thermal Annealing Fabrication of Efficient Planar Perovskite Solar Cells with Inclusion of NH4Cl. <i>Chemistry of Materials</i> , 2015 , 27, 1448-1451	9.6	114
162	A facile solvothermal growth of single crystal mixed halide perovskite CH3NH3Pb(Br(1-x)Cl(x))3. <i>Chemical Communications</i> , 2015 , 51, 7820-3	5.8	114
161	Hydrochloric acid accelerated formation of planar CH3NH3PbI3 perovskite with high humidity tolerance. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 19674-19678	13	108
160	Mesoporous perovskite solar cells: material composition, charge-carrier dynamics, and device characteristics. <i>Faraday Discussions</i> , 2014 , 176, 301-12	3.6	103
159	In Situ Fabrication of Highly Luminescent Bifunctional Amino Acid Crosslinked 2D/3D NH3C4H9COO(CH3NH3PbBr3)n Perovskite Films. <i>Advanced Functional Materials</i> , 2017 , 27, 1603568	15.6	103
158	Anodic deposition of colloidal iridium oxide thin films from hexahydroxyiridate(IV) solutions. <i>Small</i> , 2011 , 7, 2087-93	11	100
157	Synthesis and Characterization of Nitrogen-Doped Group IVB Visible-Light-Photoactive Metal Oxide Nanoparticles. <i>Advanced Materials</i> , 2007 , 19, 3995-3999	24	98
156	Ultrasensitive Photodetectors Based on Island-Structured CH3NH3PbI3 Thin Films. <i>ACS Applied Materials & Acs Applied &</i>	9.5	96
155	CsPb(I Br1)B solar cells. <i>Science Bulletin</i> , 2019 , 64, 1532-1539	10.6	92
155 154	CsPb(I Br1) solar cells. <i>Science Bulletin</i> , 2019 , 64, 1532-1539 Mesoporous TiO 2 films coated on carbon foam based on waste polyurethane for enhanced photocatalytic oxidation of VOCs. <i>Applied Catalysis B: Environmental</i> , 2017 , 212, 1-6	10.6	92 89
	Mesoporous TiO 2 films coated on carbon foam based on waste polyurethane for enhanced		
154	Mesoporous TiO 2 films coated on carbon foam based on waste polyurethane for enhanced photocatalytic oxidation of VOCs. <i>Applied Catalysis B: Environmental</i> , 2017 , 212, 1-6 Three-step sequential solution deposition of PbI2-free CH3NH3PbI3 perovskite. <i>Journal of</i>	21.8	89
154 153	Mesoporous TiO 2 films coated on carbon foam based on waste polyurethane for enhanced photocatalytic oxidation of VOCs. <i>Applied Catalysis B: Environmental</i> , 2017 , 212, 1-6 Three-step sequential solution deposition of PbI2-free CH3NH3PbI3 perovskite. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 9086-9091 Enhancing thermoelectric performance of ternary nanocrystals through adjusting carrier	21.8	89 89
154 153 152	Mesoporous TiO 2 films coated on carbon foam based on waste polyurethane for enhanced photocatalytic oxidation of VOCs. <i>Applied Catalysis B: Environmental</i> , 2017 , 212, 1-6 Three-step sequential solution deposition of PbI2-free CH3NH3PbI3 perovskite. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 9086-9091 Enhancing thermoelectric performance of ternary nanocrystals through adjusting carrier concentration. <i>Journal of the American Chemical Society</i> , 2010 , 132, 4982-3 Synthesis, characterization and computational study of nitrogen-doped CeO2 nanoparticles with	21.8 13 16.4	89 89 88
154 153 152 151	Mesoporous TiO 2 films coated on carbon foam based on waste polyurethane for enhanced photocatalytic oxidation of VOCs. <i>Applied Catalysis B: Environmental</i> , 2017 , 212, 1-6 Three-step sequential solution deposition of PbI2-free CH3NH3PbI3 perovskite. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 9086-9091 Enhancing thermoelectric performance of ternary nanocrystals through adjusting carrier concentration. <i>Journal of the American Chemical Society</i> , 2010 , 132, 4982-3 Synthesis, characterization and computational study of nitrogen-doped CeO2 nanoparticles with visible-light activity. <i>Physical Chemistry Chemical Physics</i> , 2008 , 10, 5633-8 Highly Efficient Utilization of Nano-Fe(0) Embedded in Mesoporous Carbon for Activation of	21.8 13 16.4 3.6	89 89 88 84
154 153 152 151	Mesoporous TiO 2 films coated on carbon foam based on waste polyurethane for enhanced photocatalytic oxidation of VOCs. <i>Applied Catalysis B: Environmental</i> , 2017 , 212, 1-6 Three-step sequential solution deposition of PbI2-free CH3NH3PbI3 perovskite. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 9086-9091 Enhancing thermoelectric performance of ternary nanocrystals through adjusting carrier concentration. <i>Journal of the American Chemical Society</i> , 2010 , 132, 4982-3 Synthesis, characterization and computational study of nitrogen-doped CeO2 nanoparticles with visible-light activity. <i>Physical Chemistry Chemical Physics</i> , 2008 , 10, 5633-8 Highly Efficient Utilization of Nano-Fe(0) Embedded in Mesoporous Carbon for Activation of Peroxydisulfate. <i>Environmental Science & Camp; Technology</i> , 2019 , 53, 9081-9090	21.8 13 16.4 3.6	89 89 88 84 83

(2015-2018)

146	Hydrophilic mesoporous carbon as iron(III)/(II) electron shuttle for visible light enhanced Fenton-like degradation of organic pollutants. <i>Applied Catalysis B: Environmental</i> , 2018 , 231, 108-114	21.8	72
145	General Method for the Synthesis of Ultrastable Core/Shell Quantum Dots by Aluminum Doping. Journal of the American Chemical Society, 2015, 137, 12430-3	16.4	71
144	Ion-Exchange-Induced 2D-3D Conversion of HMA FA PbI Cl Perovskite into a High-Quality MA FA PbI Perovskite. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 13460-13464	16.4	71
143	Oxidatively stable nanoporous silicon photocathodes with enhanced onset voltage for photoelectrochemical proton reduction. <i>Nano Letters</i> , 2015 , 15, 2517-25	11.5	69
142	Organic-inorganic interactions of single crystalline organolead halide perovskites studied by Raman spectroscopy. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 18112-8	3.6	68
141	Li dopant induces moisture sensitive phase degradation of an all-inorganic CsPbIBr perovskite. <i>Chemical Communications</i> , 2018 , 54, 9809-9812	5.8	66
140	All-inorganic CsCuX (X = Cl, Br, and Br/l) perovskite quantum dots with blue-green luminescence. <i>Chemical Communications</i> , 2018 , 54, 11638-11641	5.8	65
139	A Stable Plasmonic Cu@Cu O/ZnO Heterojunction for Enhanced Photocatalytic Hydrogen Generation. <i>ChemSusChem</i> , 2018 , 11, 1505-1511	8.3	63
138	Tuning layered Fe-doped g-C3N4 structure through pyrolysis for enhanced Fenton and photo-Fenton activities. <i>Carbon</i> , 2020 , 159, 461-470	10.4	58
137	Electron transfer kinetics in water splitting dye-sensitized solar cells based on core-shell oxide electrodes. <i>Faraday Discussions</i> , 2012 , 155, 165-76; discussion 207-22	3.6	57
136	Toward high-performance nanostructured thermoelectric materials: the progress of bottom-up solution chemistry approaches. <i>Journal of Materials Chemistry</i> , 2011 , 21, 17049		57
135	Improving Thermoelectric Properties of Chemically Synthesized Bi2Te3-Based Nanocrystals by Annealing. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 11607-11613	3.8	56
134	MoS-Stratified CdS-CuS Core-Shell Nanorods for Highly Efficient Photocatalytic Hydrogen Production. <i>ACS Nano</i> , 2020 , 14, 5468-5479	16.7	54
133	Chemical synthesis of Bi(0.5)Sb(1.5)Te3 nanocrystals and their surface oxidation properties. <i>ACS Applied Materials & Discourse (Materials & Discourse)</i> , 1, 1259-63	9.5	53
132	CdTe/CdS Core/Shell Quantum Dots Cocatalyzed by Sulfur Tolerant [Mo3S13]2[Nanoclusters for Efficient Visible-Light-Driven Hydrogen Evolution. <i>ACS Sustainable Chemistry and Engineering</i> , 2016 , 4, 6653-6658	8.3	50
131	Sulfurated [NiFe]-based layered double hydroxides nanoparticles as efficient co-catalysts for photocatalytic hydrogen evolution using CdTe/CdS quantum dots. <i>Applied Catalysis B: Environmental</i> , 2017 , 209, 155-160	21.8	48
130	Photocatalytic remediation of ionic pollutant. <i>Science Bulletin</i> , 2015 , 60, 1791-1806	10.6	48
129	A novel highly active nanostructured IrO2/Ti anode for water oxidation. <i>International Journal of Hydrogen Energy</i> , 2015 , 40, 14279-14283	6.7	48

128	Chemically Stable Black Phase CsPbI Inorganic Perovskites for High-Efficiency Photovoltaics. <i>Advanced Materials</i> , 2020 , 32, e2001025	24	48
127	Stable Lead-Free (CH3NH3)3Bi2I9 Perovskite for Photocatalytic Hydrogen Generation. <i>ACS Sustainable Chemistry and Engineering</i> , 2019 , 7, 15080-15085	8.3	47
126	Photocurrent enhanced by singlet fission in a dye-sensitized solar cell. <i>ACS Applied Materials & Amp; Interfaces</i> , 2015 , 7, 2286-93	9.5	47
125	Sn-doped hematite films as photoanodes for efficient photoelectrochemical water oxidation. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 6751-6755	13	43
124	A general non-CH3NH3X (X = I, Br) one-step deposition of CH3NH3PbX3 perovskite for high performance solar cells. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 3245-3248	13	43
123	Synergetic Effect of Chloride Doping and CH NH PbCl on CH NH PbI Cl Perovskite-Based Solar Cells. <i>ChemSusChem</i> , 2017 , 10, 2365-2369	8.3	42
122	A metal-free visible light active photo-electro-Fenton-like cell for organic pollutants degradation. <i>Applied Catalysis B: Environmental</i> , 2018 , 229, 211-217	21.8	39
121	Defect Engineering in Semiconductors: Manipulating Nonstoichiometric Defects and Understanding Their Impact in Oxynitrides for Solar Energy Conversion. <i>Advanced Functional Materials</i> , 2019 , 29, 1808389	15.6	37
120	Understanding the Effect of Monomeric Iridium(III/IV) Aquo Complexes on the Photoelectrochemistry of IrO(x)[hH2O-Catalyzed Water-Splitting Systems. <i>Journal of the American Chemical Society</i> , 2015 , 137, 8749-57	16.4	36
119	Steric Mixed-Cation 2D Perovskite as a Methylammonium Locker to Stabilize MAPbl. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 1469-1473	16.4	35
118	Light-Driven Overall Water Splitting Enabled by a Photo-Dember Effect Realized on 3D Plasmonic Structures. <i>ACS Nano</i> , 2016 , 10, 6693-701	16.7	34
117	Proton Reduction Using a Hydrogenase-Modified Nanoporous Black Silicon Photoelectrode. <i>ACS Applied Materials & Discours Applied &</i>	9.5	33
116	Intercalation crystallization of phase-pure HC(NHIPbliLipon microstructurally engineered Pblil thin films for planar perovskite solar cells. <i>Nanoscale</i> , 2016 , 8, 6265-70	7.7	33
115	Nonvolatile chlorinated additives adversely influence CH3NH3PbI3 based planar solar cells. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 9137-9140	13	32
114	The Role of Dimethylammonium Iodide in CsPbI3 Perovskite Fabrication: Additive or Dopant?. <i>Angewandte Chemie</i> , 2019 , 131, 16844-16849	3.6	32
113	Binderless and Oxygen Vacancies Rich FeNi/Graphitized Mesoporous Carbon/Ni Foam for Electrocatalytic Reduction of Nitrate. <i>Environmental Science & Description of Nitrate</i> (2018) 13344-13353	10.3	32
112	Organic Tetrabutylammonium Cation Intercalation to Heal Inorganic CsPbI Perovskite. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 12351-12355	16.4	32
111	Highly efficient colloidal MnxCd1⊠S nanorod solid solution for photocatalytic hydrogen generation. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 23683-23689	13	32

(2018-2018)

110	Rod-shaped thiocyanate-induced abnormal band gap broadening in SCNIdoped CsPbBr3 perovskite nanocrystals. <i>Nano Research</i> , 2018 , 11, 2715-2723	10	30	
109	Organic salt mediated growth of phase pure and stable all-inorganic CsPbX3 (X = I, Br) perovskites for efficient photovoltaics. <i>Science Bulletin</i> , 2019 , 64, 1773-1779	10.6	29	
108	A highly efficient nanoporous BiVO4 photoelectrode with enhanced interface charge transfer Co-catalyzed by molecular catalyst. <i>Applied Catalysis B: Environmental</i> , 2018 , 225, 504-511	21.8	29	
107	Photostability of MAPbI3 Perovskite Solar Cells by Incorporating Black Phosphorus. <i>Solar Rrl</i> , 2019 , 3, 1900197	7.1	28	
106	Highly photocatalytic active thiomolybdate [Mo3S13]2[clusters/BiOBr nanocomposite with enhanced sulfur tolerance. <i>Applied Catalysis B: Environmental</i> , 2016 , 183, 1-7	21.8	28	
105	Spontaneous low-temperature crystallization of FAPbI3 for highly efficient perovskite solar cells. <i>Science Bulletin</i> , 2019 , 64, 1608-1616	10.6	27	
104	Inorganic CsPbI3 Perovskites toward High-Efficiency Photovoltaics. <i>Energy and Environmental Materials</i> , 2019 , 2, 73-78	13	27	
103	CsI Enhanced Buried Interface for Efficient and UV-Robust Perovskite Solar Cells. <i>Advanced Energy Materials</i> ,2103151	21.8	27	
102	CuO nanosheet as a recyclable Fenton-like catalyst prepared from simulated Cu(II) waste effluents by alkaline H2O2 reaction. <i>Environmental Science: Nano</i> , 2019 , 6, 105-114	7.1	25	
101	Size-dependent nanocrystal sorbent for copper removal from water. <i>Chemical Engineering Journal</i> , 2016 , 284, 565-570	14.7	25	
100	Lead-free silver-antimony halide double perovskite quantum dots with superior blue photoluminescence. <i>Chemical Communications</i> , 2019 , 55, 14741-14744	5.8	25	
99	Advances to High-Performance Black-Phase FAPbI3 Perovskite for Efficient and Stable Photovoltaics. <i>Small Structures</i> , 2021 , 2, 2000130	8.7	25	
98	Secondary battery inspired NiO nanosheets with rich Ni(III) defects for enhancing persulfates activation in phenolic waste water degradation. <i>Chemical Engineering Journal</i> , 2019 , 360, 97-103	14.7	24	
97	Efficient and Stable CsPbI Inorganic Perovskite Photovoltaics Enabled by Crystal Secondary Growth. <i>Advanced Materials</i> , 2021 , 33, e2103688	24	24	
96	Highly Active IrOx Nanoparticles/Black Si Electrode for Efficient Water Splitting with Conformal TiO2 Interface Engineering. <i>ACS Sustainable Chemistry and Engineering</i> , 2017 , 5, 10940-10946	8.3	22	
95	NiFe Layered Double Hydroxide (LDH) Nanosheet Catalysts with Fe as Electron Transfer Mediator for Enhanced Persulfate Activation. <i>Journal of Physical Chemistry Letters</i> , 2020 , 11, 968-973	6.4	22	
94	Phosphorus-doped Isotype g-C3N4/g-C3N4: An Efficient Charge Transfer System for Photoelectrochemical Water Oxidation. <i>ChemCatChem</i> , 2019 , 11, 729-736	5.2	22	
93	Integration of a functionalized graphene nano-network into a planar perovskite absorber for high-efficiency large-area solar cells. <i>Materials Horizons</i> , 2018 , 5, 868-873	14.4	21	

92	Efficient hydrogen evolution from the hydrolysis of ammonia borane using bilateral-like WO nanorods coupled with NiP nanoparticles. <i>Chemical Communications</i> , 2018 , 54, 6188-6191	5.8	21
91	CH3NH3Cl Assisted Solvent Engineering for Highly Crystallized and Large Grain Size Mixed-Composition (FAPbI3)0.85(MAPbBr3)0.15 Perovskites. <i>Crystals</i> , 2017 , 7, 272	2.3	20
90	In situ growth of ultra-thin perovskitoid layer to stabilize and passivate MAPbI3 for efficient and stable photovoltaics. <i>EScience</i> , 2021 ,		20
89	CaMnO3 perovskite nanocrystals for efficient peroxydisulfate activation. <i>Chemical Engineering Journal</i> , 2020 , 398, 125638	14.7	19
88	Effect of chloride substitution on interfacial charge transfer processes in MAPbI3 perovskite thin film solar cells: planar versus mesoporous. <i>Nanoscale Advances</i> , 2019 , 1, 827-833	5.1	19
87	A facile deposition of large grain and phase pure FAPbI 3 for perovskite solar cells via a flash crystallization. <i>Materials Today Energy</i> , 2017 , 5, 293-298	7	19
86	A mixed-cation lead iodide MA1\(\text{\textit{B}EAxPbI3}\) absorber for perovskite solar cells. <i>Journal of Energy Chemistry</i> , 2018 , 27, 215-218	12	18
85	Interfacial crosslinked quasi-2D perovskite with boosted carrier transport and enhanced stability. Journal Physics D: Applied Physics, 2018 , 51, 404001	3	18
84	Wireless activation of neurons in brain slices using nanostructured semiconductor photoelectrodes. <i>Angewandte Chemie - International Edition</i> , 2009 , 48, 2407-10	16.4	18
83	In situ gas/solid reaction for the formation of luminescent quantum confined CH3NH3PbBr3 perovskite planar film. <i>Chemical Communications</i> , 2016 , 52, 11080-3	5.8	18
82	Optoelectronic Dichotomy of Mixed Halide CHNHPb(BrCl) Single Crystals: Surface versus Bulk Photoluminescence. <i>Journal of the American Chemical Society</i> , 2018 , 140, 11811-11819	16.4	18
81	[Mo3S13]2[modified TiO2 coating on non-woven fabric for efficient photocatalytic mineralization of acetone. <i>Applied Catalysis B: Environmental</i> , 2019 , 245, 190-196	21.8	17
80	Dry Chemistry of Ferrate(VI): A Solvent-Free Mechanochemical Way for Versatile Green Oxidation. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 10949-10953	16.4	17
79	Secondary battery inspired ⊞ickel hydroxide as an efficient Ni-based heterogeneous catalyst for sulfate radical activation. <i>Science Bulletin</i> , 2018 , 63, 278-281	10.6	16
78	Potential lead toxicity and leakage issues on lead halide perovskite photovoltaics. <i>Journal of Hazardous Materials</i> , 2021 , 127848	12.8	16
77	Recent progress and prospects of integrated perovskite/organic solar cells. <i>Applied Physics Reviews</i> , 2020 , 7, 031303	17.3	16
76	In situ modification of BiVO nanosheets on graphene for boosting photocatalytic water oxidation. <i>Nanoscale</i> , 2020 , 12, 14853-14862	7.7	15
75	Ferric (hydr)oxide/mesoporous carbon composites as Fenton-like catalysts for degradation of phenol. <i>Research on Chemical Intermediates</i> , 2018 , 44, 4103-4117	2.8	15

74	Ultrasensitive optical detection of anions by quantum dots. <i>Nanoscale Horizons</i> , 2016 , 1, 125-134	10.8	14
73	Enhanced visible/near-infrared light harvesting and superior charge separation via 0D/2D all-carbon hybrid architecture for photocatalytic oxygen evolution. <i>Carbon</i> , 2020 , 167, 724-735	10.4	14
72	Using steric hindrance to manipulate and stabilize metal halide perovskites for optoelectronics. <i>Chemical Science</i> , 2021 , 12, 7231-7247	9.4	14
71	Improvement of the thermoelectric power factor through anisotropic growth of nanostructured PbSe thin films. <i>Dalton Transactions</i> , 2010 , 39, 1095-100	4.3	13
70	Effective removal of chlorinated organic pollutants by bimetallic iron-nickel sulfide activation of peroxydisulfate. <i>Chinese Chemical Letters</i> , 2020 , 31, 1535-1539	8.1	13
69	Stabilizing the MAPbI3 perovksite via the in-situ formed lead sulfide layer for efficient and robust solar cells. <i>Journal of Energy Chemistry</i> , 2020 , 47, 62-65	12	13
68	Incorporating quantum dots for high efficiency and stable perovskite photovoltaics. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 25017-25027	13	13
67	Highly Efficient (110) Orientated FA-MA Mixed Cation Perovskite Solar Cells via Functionalized Carbon Nanotube and Methylammonium Chloride Additive. <i>Small Methods</i> , 2020 , 4, 1900511	12.8	13
66	Brand new 1D branched CuO nanowire arrays for efficient photoelectrochemical water reduction. <i>Dalton Transactions</i> , 2018 , 47, 14566-14572	4.3	12
65	2-Aminobenzenethiol-Functionalized Silver-Decorated Nanoporous Silicon Photoelectrodes for Selective CO Reduction. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 11462-11469	16.4	11
64	Steric Mixed-Cation 2D Perovskite as a Methylammonium Locker to Stabilize MAPbI3. <i>Angewandte Chemie</i> , 2020 , 132, 1485-1489	3.6	11
63	Organic Tetrabutylammonium Cation Intercalation to Heal Inorganic CsPbI3 Perovskite. <i>Angewandte Chemie</i> , 2021 , 133, 12459-12463	3.6	11
62	A Tandem Water Splitting Cell Based on Nanoporous BiVO4 Photoanode Cocatalyzed by Ultrasmall Cobalt Borate Sandwiched with Conformal TiO2 Layers. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 16228-16234	8.3	11
61	Peroxydisulfate activation by photo-generated charges on mesoporous carbon nitride for removal of chlorophenols. <i>Applied Catalysis B: Environmental</i> , 2021 , 296, 120370	21.8	11
60	Highly photocatalytic active thiomolybdate [Mo 3 S 13] 2Itlusters/Bi 2 WO 6 nanocomposites. <i>Catalysis Today</i> , 2016 , 274, 22-27	5.3	10
59	Relativistic DFT study on the reaction mechanism of second-row transition metal Ru with CO2. <i>Journal of Physical Chemistry A</i> , 2006 , 110, 3552-8	2.8	10
58	Harvest of ocean energy by triboelectric generator technology. <i>Applied Physics Reviews</i> , 2018 , 5, 03130	317.3	9
57	Photoelectrochemical reduction of nitrates with visible light by nanoporous Si photoelectrode. <i>Electrochimica Acta</i> , 2015 , 177, 366-369	6.7	9

56	Stable Cesium-Rich Formamidinium/Cesium Pure-Iodide Perovskites for Efficient Photovoltaics. <i>ACS Energy Letters</i> , 2021 , 6, 2735-2741	20.1	9
55	Highly Stable Inorganic Lead Halide Perovskite toward Efficient Photovoltaics. <i>Accounts of Chemical Research</i> , 2021 , 54, 3452-3461	24.3	9
54	Organic Matrix Assisted Low-temperature Crystallization of Black Phase Inorganic Perovskites. <i>Angewandte Chemie - International Edition</i> , 2021 ,	16.4	9
53	Perovskite solar cells by vapor deposition based and assisted methods. <i>Applied Physics Reviews</i> , 2022 , 9, 021305	17.3	9
52	A simple fabrication of CH3NH3PbI3 perovskite for solar cells using low-purity PbI2. <i>Journal of Semiconductors</i> , 2017 , 38, 014004	2.3	8
51	Potassium stabilization of methylammonium lead bromide perovskite for robust photocatalytic H2 generation. <i>EcoMat</i> , 2020 , 2, e12015	9.4	8
50	Complete Conversion of PbI to Methyl Ammonium PbI Improves Perovskite Solar Cell Efficiency. <i>ChemPhysChem</i> , 2017 , 18, 47-50	3.2	8
49	Deep-Red Perovskite Light-Emitting Diodes Based on One-Step-Formed EcsPbI Cuboid Crystallites. <i>Advanced Materials</i> , 2021 , 33, e2105699	24	8
48	Partial Cu ion exchange induced triangle hexagonal MnCuCdS nanocrystals for enhanced photocatalytic hydrogen evolution. <i>Chemical Communications</i> , 2020 , 56, 8127-8130	5.8	7
47	High performance nanoporous silicon photoelectrodes co-catalyzed with an earth abundant [Mo3S13]2[hanocluster via drop coating. <i>RSC Advances</i> , 2016 , 6, 15610-15614	3.7	7
46	Photodeposited FeOOH vs electrodeposited Co-Pi to enhance nanoporous BiVO4for photoelectrochemical water splitting. <i>Journal of Semiconductors</i> , 2017 , 38, 053004	2.3	7
45	Overcoming Acidic HO/Fe(II/III) Redox-Induced Low HO Utilization Efficiency by Carbon Quantum Dots Fenton-like Catalysis <i>Environmental Science & Environmental Science & En</i>	10.3	7
44	Recent Progress of Lead Halide Perovskite Sensitized Solar Cells. <i>Acta Chimica Sinica</i> , 2015 , 73, 202	3.3	7
43	Recent Progress of Photocatalysis Based on Metal Halide Perovskites. <i>Acta Chimica Sinica</i> , 2019 , 77, 10	7 5 .3	7
42	V-rich Bi2S3 nanowire with efficient charge separation and transport for high-performance and robust photoelectrochemical application under visible light. <i>Catalysis Today</i> , 2020 , 350, 47-55	5.3	7
41	5-Ammonium Valeric Acid Iodide to Stabilize MAPbI via a Mixed-Cation Perovskite with Reduced Dimension. <i>Journal of Physical Chemistry Letters</i> , 2020 , 11, 8170-8176	6.4	7
40	Ion-Exchange-Induced 2DBD Conversion of HMA1NFAxPbI3Cl Perovskite into a High-Quality MA1NFAxPbI3 Perovskite. <i>Angewandte Chemie</i> , 2016 , 128, 13658-13662	3.6	7
39	Two-Dimensional Materials for Perovskite Solar Cells with Enhanced Efficiency and Stability 2021 , 3, 1402-1416		7

(2021-2020)

38	Interface modification of SnO2 layer using pl junction double layer for efficiency enhancement of perovskite solar cell. <i>Journal Physics D: Applied Physics</i> , 2020 , 53, 505103	3	6
37	Mechanochemically sulfured FeS1.92 as stable and efficient heterogeneous Fenton catalyst. <i>Chinese Chemical Letters</i> , 2020 , 31, 1978-1981	8.1	6
36	Lead-Free Cs AgSbCl Double Perovskite Nanocrystals for Effective Visible-Light Photocatalytic C-C Coupling Reactions <i>ChemSusChem</i> , 2021 , e202102334	8.3	6
35	Multi-Level Passivation of MAPbI 3 Perovskite for Efficient and Stable Photovoltaics. <i>Advanced Functional Materials</i> ,2108944	15.6	6
34	Electrocatalytic Valorization of Poly(ethylene terephthalate) Plastic and CO2 for Simultaneous Production of Formic Acid. <i>ACS Catalysis</i> ,6722-6728	13.1	6
33	Fast Charge Diffusion in MAPb(IBr) Films for High-Efficiency Solar Cells Revealed by Ultrafast Time-Resolved Reflectivity. <i>Journal of Physical Chemistry A</i> , 2019 , 123, 2674-2678	2.8	5
32	Dry Chemistry of Ferrate(VI): A Solvent-Free Mechanochemical Way for Versatile Green Oxidation. <i>Angewandte Chemie</i> , 2018 , 130, 11115-11119	3.6	5
31	Sensing Thermally Denatured DNA by Inhibiting the Growth of Au Nanoparticles: Spectral and Electrochemical Studies. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 14461-14468	3.8	5
30	Electro-Reforming Polyethylene Terephthalate Plastic to Co-Produce Valued Chemicals and Green Hydrogen <i>Journal of Physical Chemistry Letters</i> , 2022 , 13, 622-627	6.4	5
29	Cu-Sb-S Ternary Semiconductor Nanoparticle Plasmonics. <i>Nano Letters</i> , 2021 , 21, 2610-2617	11.5	5
28	Tubular morphology preservation and doping engineering of Sn/P-codoped hematite for photoelectrochemical water oxidation. <i>Dalton Transactions</i> , 2019 , 48, 928-935	4.3	4
27	2-Aminobenzenethiol-Functionalized Silver-Decorated Nanoporous Silicon Photoelectrodes for Selective CO2 Reduction. <i>Angewandte Chemie</i> , 2020 , 132, 11559-11566	3.6	4
26	Additive-Assisted Controllable Growth of Perovskites. <i>Series on Chemistry, Energy and the Environment</i> , 2017 , 1-26	0.2	4
25	Wireless Activation of Neurons in Brain Slices Using Nanostructured Semiconductor Photoelectrodes. <i>Angewandte Chemie</i> , 2009 , 121, 2443-2446	3.6	4
24	All-inorganic lead-free metal halide perovskite quantum dots: progress and prospects. <i>Chemical Communications</i> , 2021 , 57, 7465-7479	5.8	4
23	The ClOllgeneration and chlorate suppression in photoelectrochemical reactive chlorine species systems on BiVO4 photoanodes. <i>Applied Catalysis B: Environmental</i> , 2021 , 296, 120387	21.8	4
22	Synthesis and Characterization of Nitrogen-doped SnO2 and Comparison to Nitrogen-doped CeO2 Nanoparticles for Visible-light Applications. <i>ECS Transactions</i> , 2009 , 16, 67-77	1	3
21	The Chemical Design in High-Performance Lead Halide Perovskite: Additive vs Dopant?. <i>Journal of Physical Chemistry Letters</i> , 2021 , 12, 11636-11644	6.4	3

20	Design of Advanced Functional Materials Using Nanoporous Single-Site Photocatalysts. <i>Chemical Record</i> , 2020 , 20, 660-671	6.6	3
19	Nano-Fe(0)/mesoporous carbon supported on biochar for activating peroxydisulfate to remove polycyclic aromatics hydrocarbons. <i>Emergent Materials</i> , 2020 , 3, 307-313	3.5	2
18	Top-down fabrication of colloidal plasmonic MoO nanocrystals via solution chemistry hydrogenation. <i>Chemical Communications</i> , 2020 , 56, 4816-4819	5.8	2
17	The layer boundary effect on multi-layer mesoporous TiO2 film based dye sensitized solar cells. <i>RSC Advances</i> , 2016 , 6, 98167-98170	3.7	2
16	Two dimensional porous Ni12P5 sheet modified Mn0.5Cd0.5S for efficient photo-catalytic hydrogen production. <i>International Journal of Hydrogen Energy</i> , 2022 , 47, 8275-8283	6.7	2
15	Modification of Ti-doped Hematite Photoanode with Quasi-molecular Cocatalyst: A Comparison of Improvement Mechanism Between Non-noble and Noble Metals. <i>ChemSusChem</i> , 2021 , 14, 2180-2187	8.3	2
14	Near UV luminescent Cs2NaBi0.75Sb0.25Cl6 perovskite colloidal nanocrystals with high stability. <i>Chinese Chemical Letters</i> , 2021 , 33, 537-537	8.1	2
13	Synergetic effects of DMA cation doping and Cl anion additives induced re-growth of MA1NDMAxPbI3 perovskites. <i>Sustainable Energy and Fuels</i> ,	5.8	2
12	MA Cation-Induced Diffusional Growth of Low-Bandgap FA-Cs Perovskites Driven by Natural Gradient Annealing. <i>Research</i> , 2021 , 2021, 9765106	7.8	2
11	Cu7S4/MnIn2S4 heterojunction for efficient photocatalytic hydrogen generation. <i>Journal of Alloys and Compounds</i> , 2021 , 884, 161035	5.7	2
10	Amorphous NiCoB-coupled MAPbI for efficient photocatalytic hydrogen evolution. <i>Dalton Transactions</i> , 2021 ,	4.3	1
9	Synergistic stabilization of CsPbI3 inorganic perovskite via 1D capping and secondary growth. <i>Journal of Energy Chemistry</i> , 2022 , 68, 387-392	12	1
8	Organic ammonium salt surface treatment stabilizing all-inorganic CsPbI2Br perovskite. <i>Wuli Xuebao/Acta Physica Sinica</i> , 2019 , 68, 158805	0.6	1
7	Influence of PbS Quantum Dots-Doped TiO2 Nanotubes in TiO2 Film as an Electron Transport Layer for Enhanced Perovskite Solar Cell Performance. <i>IEEE Journal of Photovoltaics</i> , 2020 , 10, 287-295	3.7	1
6	Incorporation of Two-Dimensional WSe into MAPbI Perovskite for Efficient and Stable Photovoltaics. <i>Journal of Physical Chemistry Letters</i> , 2021 , 12, 6883-6888	6.4	1
5	Organic Matrix Assisted Low-temperature Crystallization of Black Phase Inorganic Perovskites. Angewandte Chemie,	3.6	1
4	Hybrid Phase MoS2 as a Noble Metal-Free Photocatalyst for Conversion of Nitroaromatics to Aminoaromatics. <i>Journal of Physical Chemistry C</i> , 2021 , 125, 20887-20895	3.8	1
3	Inorganic CsPbBr 3 Perovskite Nanocrystals as Interfacial Ion Reservoirs to Stabilize FAPbI 3 Perovskite for Efficient Photovoltaics. <i>Advanced Energy Materials</i> ,2200203	21.8	1

LIST OF PUBLICATIONS

2	Stable Pure Iodide MA0.95Cs0.05PbI3 Perovskite toward Efficient 1.6 eV Bandgap Photovoltaics. Journal of Physical Chemistry Letters,5088-5093	6.4	1	
1	Surface Coordination Layer to Enhance the Stability of Plasmonic Cu Nanoparticles. <i>Journal of Physical Chemistry C.</i> 2021 , 125, 27624-27630	3.8	О	