
Bin Shen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6540971/publications.pdf Version: 2024-02-01

RIN SHEN

#	Article	IF	CITATIONS
1	Ultrathin Flexible Graphene Film: An Excellent Thermal Conducting Material with Efficient EMI Shielding. Advanced Functional Materials, 2014, 24, 4542-4548.	14.9	751
2	Facile Preparation of Lightweight Microcellular Polyetherimide/Graphene Composite Foams for Electromagnetic Interference Shielding. ACS Applied Materials & Interfaces, 2013, 5, 2677-2684.	8.0	692
3	Lightweight, Multifunctional Polyetherimide/Graphene@Fe ₃ O ₄ Composite Foams for Shielding of Electromagnetic Pollution. ACS Applied Materials & Interfaces, 2013, 5, 11383-11391.	8.0	557
4	Compressible Graphene-Coated Polymer Foams with Ultralow Density for Adjustable Electromagnetic Interference (EMI) Shielding. ACS Applied Materials & Interfaces, 2016, 8, 8050-8057.	8.0	448
5	Microcellular graphene foam for improved broadband electromagnetic interference shielding. Carbon, 2016, 102, 154-160.	10.3	326
6	Polyimide/graphene composite foam sheets with ultrahigh thermostability for electromagnetic interference shielding. RSC Advances, 2015, 5, 24342-24351.	3.6	227
7	Melt Blending In situ Enhances the Interaction between Polystyrene and Graphene through π–π Stacking. ACS Applied Materials & Interfaces, 2011, 3, 3103-3109.	8.0	207
8	The influence of gradient and sandwich configurations on the electromagnetic interference shielding performance of multilayered thermoplastic polyurethane/graphene composite foams. Composites Science and Technology, 2017, 138, 209-216.	7.8	179
9	Ultrathin carbon foams for effective electromagnetic interference shielding. Carbon, 2016, 100, 375-385.	10.3	177
10	Strong flexible polymer/graphene composite films with 3D saw-tooth folding for enhanced and tunable electromagnetic shielding. Carbon, 2017, 113, 55-62.	10.3	159
11	Construction of compressible Polymer/MXene composite foams for high-performance absorption-dominated electromagnetic shielding with ultra-low reflectivity. Carbon, 2021, 173, 932-940.	10.3	148
12	Porous superhydrophobic polymer/carbon composites for lightweight and self-cleaning EMI shielding application. Composites Science and Technology, 2018, 158, 86-93.	7.8	147
13	Synthesis of graphene by low-temperature exfoliation and reduction of graphite oxide under ambient atmosphere. Journal of Materials Chemistry C, 2013, 1, 50-53.	5.5	112
14	Evaluation, fabrication and dynamic performance regulation of green EMI-shielding materials with low reflectivity: A review. Composites Part B: Engineering, 2022, 233, 109652.	12.0	108
15	Waterproof MXene-decorated wood-pulp fabrics for high-efficiency electromagnetic interference shielding and Joule heating. Composites Part B: Engineering, 2020, 198, 108250.	12.0	103
16	Carbon Composite Networks with Ultrathin Skin Layers of Graphene Film for Exceptional Electromagnetic Interference Shielding. ACS Applied Materials & Interfaces, 2018, 10, 38255-38263.	8.0	73
17	Construction of shape-memory carbon foam composites for adjustable EMI shielding under self-fixable mechanical deformation. Chemical Engineering Journal, 2021, 405, 126927.	12.7	72
18	Analysis of oxidation degree of graphite oxide and chemical structure of corresponding reduced graphite oxide by selecting different-sized original graphite. RSC Advances, 2018, 8, 17209-17217.	3.6	71

BIN SHEN

#	Article	IF	CITATIONS
19	Semi-transparent biomass-derived macroscopic carbon grids for efficient and tunable electromagnetic shielding. Carbon, 2018, 139, 271-278.	10.3	68
20	Bio-inspired lightweight polypropylene foams with tunable hierarchical tubular porous structure and its application for oil-water separation. Chemical Engineering Journal, 2019, 370, 1322-1330.	12.7	67
21	Novel Straw-Derived Carbon Materials for Electromagnetic Interference Shielding: A Waste-to-Wealth and Sustainable Initiative. ACS Sustainable Chemistry and Engineering, 2019, 7, 9663-9670.	6.7	61
22	Ultrasonication-assisted direct functionalization of graphene with macromolecules. RSC Advances, 2012, 2, 4713.	3.6	57
23	Enhanced dispersion, flame retardancy and mechanical properties of polypropylene/intumescent flame retardant composites via supercritical CO2 foaming followed by defoaming. Composites Science and Technology, 2019, 171, 282-290.	7.8	53
24	Ultrastrong, flexible and lightweight anisotropic polypropylene foams with superior flame retardancy. Composites Part A: Applied Science and Manufacturing, 2019, 116, 180-186.	7.6	47
25	High-Performance Carbonized Waste Corrugated Boards Reinforced with Epoxy Coating as Lightweight Structured Electromagnetic Shields. ACS Sustainable Chemistry and Engineering, 2019, 7, 18718-18725.	6.7	46
26	One-Pot Sintering Strategy for Efficient Fabrication of High-Performance and Multifunctional Graphene Foams. ACS Applied Materials & Interfaces, 2017, 9, 13323-13330.	8.0	40
27	Self-templating graphene network composites by flame carbonization for excellent electromagnetic interference shielding. Composites Part B: Engineering, 2020, 182, 107615.	12.0	39
28	Steam-chest molding of polypropylene/carbon black composite foams as broadband EMI shields with high absorptivity. Composites Communications, 2020, 22, 100508.	6.3	39
29	Biomass-based aligned carbon networks with double-layer construction for tunable electromagnetic shielding with ultra-low reflectivity. Journal of Materials Science and Technology, 2022, 103, 98-104.	10.7	33
30	Large-scale fabrication of lightweight, tough polypropylene/carbon black composite foams as broadband microwave absorbers. Composites Communications, 2020, 20, 100358.	6.3	33
31	Fabrication of microcellular polymer/graphene nanocomposite foams. Polymer International, 2012, 61, 1693-1702.	3.1	30
32	Humidification of high-performance and multifunctional polyimide/carbon nanotube composite foams for enhanced electromagnetic shielding. Materials Today Physics, 2021, 21, 100521.	6.0	30
33	Magnetic-electric composite coating with oriented segregated structure for enhanced electromagnetic shielding. Journal of Materials Science and Technology, 2022, 96, 11-20.	10.7	27
34	Biomimetic porous polypropylene foams with special wettability properties. Composites Part B: Engineering, 2020, 190, 107927.	12.0	26
35	High-performance porous carbon foams via catalytic pyrolysis of modified isocyanate-based polyimide foams for electromagnetic shielding. Nano Research, 2022, 15, 6851-6859.	10.4	22
36	Structural design of compressible shape-memory foams for smart self-fixable electromagnetic shielding with reduced reflection. Materials Today Physics, 2022, 22, 100612.	6.0	16

Bin Shen

#	Article	IF	CITATIONS
37	Subwavelength Periodic Shielding Materials: Toward Enhanced Shielding of the Incomplete Enclosure. IEEE Microwave and Wireless Components Letters, 2019, 29, 113-115.	3.2	13
38	Accelerating the graphitization process of polyimide by addition of graphene. Journal of Applied Polymer Science, 2015, 132, .	2.6	12
39	Multifunctional TPU composite foams with embedded biomass-derived carbon networks for electromagnetic interference shielding. Composites Communications, 2022, 30, 101062.	6.3	12
40	Extruded polypropylene foams with radially gradient porous structures and selective filtration property via supercritical CO2 foaming. Journal of CO2 Utilization, 2022, 60, 101995.	6.8	12
41	Lightweight and compressible anisotropic honeycomb-like graphene composites for highly tunable electromagnetic shielding with multiple functions. Materials Today Physics, 2022, 24, 100695.	6.0	11
42	Multifunctional Textiles Enabled by Simultaneous Interaction with Infrared and Microwave Electromagnetic Waves. Advanced Materials Interfaces, 2022, 9, .	3.7	9
43	Controllable growth of NiCo compounds with different morphologies and structures on carbon fabrics as EMI shields with improved absorptivity. Carbon, 2022, 197, 508-518.	10.3	9
44	Novel lightweight open-cell polypropylene foams for filtering hazardous materials. RSC Advances, 2020, 10, 17694-17701.	3.6	6
45	Porous graphene films with worm-like graphene surface as ultrafast adsorbents for oils and organic solvents. Materials Letters, 2020, 264, 127397.	2.6	6
46	A Rasorber-Like Waveguide Based on Thin Film. IEEE Microwave and Wireless Components Letters, 2018, 28, 558-560.	3.2	4
47	Absorptive Surface Based on Graphene Composite for Advanced EMI Suppression. , 2019, , .		4
48	Analysis of Chemical Structure of Reduced Graphite Oxide Synthesized in Different Reduction Atmospheres. ChemistrySelect, 2019, 4, 1745-1752.	1.5	1