Fred van de Velde

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6540825/publications.pdf

Version: 2024-02-01

51 papers 4,231 citations

39 h-index 50 g-index

53 all docs

53 docs citations

53 times ranked

3552 citing authors

#	Article	IF	CITATIONS
1	Identification of selected seaweed polysaccharides (phycocolloids) by vibrational spectroscopy (FTIR-ATR and FT-Raman). Food Hydrocolloids, 2009, 23, 1903-1909.	5.6	375
2	Flavor Aspects of Pulse Ingredients. Cereal Chemistry, 2017, 94, 58-65.	1.1	239
3	Charge density of polysaccharide controls microstructure and large deformation properties of mixed gels. Food Hydrocolloids, 2007, 21, 1172-1187.	5.6	191
4	Microstructure, texture and oral processing: New ways to reduce sugar and salt in foods. Current Opinion in Colloid and Interface Science, 2013, 18, 334-348.	3.4	141
5	Improved operational stability of peroxidases by coimmobilization with glucose oxidase. Biotechnology and Bioengineering, 2000, 69, 286-291.	1.7	136
6	The gap between food gel structure, texture and perception. Food Hydrocolloids, 2006, 20, 423-431.	5.6	135
7	The revised NMR chemical shift data of carrageenans. Carbohydrate Research, 2004, 339, 2309-2313.	1.1	129
8	Structure and function of hybrid carrageenans. Food Hydrocolloids, 2008, 22, 727-734.	5.6	124
9	Visualisation of starch granule morphologies using confocal scanning laser microscopy (CSLM). Journal of the Science of Food and Agriculture, 2002, 82, 1528-1536.	1.7	123
10	Confocal scanning light microscopy (CSLM) on mixtures of gelatine and polysaccharides. Food Research International, 2001, 34, 931-938.	2.9	119
11	EFFECT OF DROPLET–MATRIX INTERACTIONS ON LARGE DEFORMATION PROPERTIES OF EMULSIONâ€FILLED GELS. Journal of Texture Studies, 2007, 38, 511-535.	1.1	117
12	The mechanism behind microstructure formation in mixed whey protein–polysaccharide cold-set gels. Food Hydrocolloids, 2009, 23, 755-764.	5.6	114
13	Evidence for ball-bearing mechanism of microparticulated whey protein as fat replacer in liquid and semi-solid multi-component model foods. Food Hydrocolloids, 2016, 52, 403-414.	5.6	114
14	Biocatalytic and biomimetic oxidations with vanadium. Journal of Inorganic Biochemistry, 2000, 80, 81-89.	1.5	113
15	On the structure of $\hat{I}^{\hat{I}}$ -hybrid carrageenans. Carbohydrate Research, 2001, 331, 271-283.	1.1	112
16	Improving the catalytic performance of peroxidases in organic synthesis. Trends in Biotechnology, 2001, 19, 73-80.	4.9	111
17	Deformation and fracture of emulsion-filled gels: Effect of oil content and deformation speed. Food Hydrocolloids, 2009, 23, 1381-1393.	5.6	106
18	Fat droplet characteristics affect rheological, tribological and sensory properties of food gels. Food Hydrocolloids, 2015, 44, 244-259.	5.6	105

#	Article	IF	Citations
19	The structure of $\hat{l}^{\varrho}\hat{l}^1$ -hybrid carrageenans II. Coilâ \in "helix transition as a function of chain composition. Carbohydrate Research, 2005, 340, 1113-1129.	1.1	100
20	Visualisation of biopolymer mixtures using confocal scanning laser microscopy (CSLM) and covalent labelling techniques. Colloids and Surfaces B: Biointerfaces, 2003, 31, 159-168.	2.5	94
21	Microstructural features of composite whey protein/polysaccharide gels characterized at different length scales. Food Hydrocolloids, 2009, 23, 1288-1298.	5.6	91
22	Enantioselective sulfoxidation mediated by vanadium-incorporated phytase: a hydrolase acting as a peroxidase. Chemical Communications, 1998, , 1891-1892.	2.2	90
23	Portuguese carrageenophytes: Carrageenan composition and geographic distribution of eight species (Gigartinales, Rhodophyta). Carbohydrate Polymers, 2011, 84, 614-623.	5.1	89
24	Matrix properties affect the sensory perception of emulsion-filled gels. Food Hydrocolloids, 2008, 22, 353-363.	5 . 6	83
25	Protein-Polysaccharide Interactions to Alter Texture. Annual Review of Food Science and Technology, 2015, 6, 371-388.	5.1	83
26	Enhancement of sweetness intensity in gels by inhomogeneous distribution of sucrose. Food Quality and Preference, 2010, 21, 837-842.	2.3	77
27	Deformation and fracture of emulsion-filled gels: Effect of gelling agent concentration and oil droplet size. Food Hydrocolloids, 2009, 23, 1853-1863.	5. 6	74
28	Coil-helix transition of ?-carrageenan as a function of chain regularity. Biopolymers, 2002, 65, 299-312.	1.2	68
29	Improved creaminess of low-fat yoghurt: The impact of amylomaltase-treated starch domains. Food Hydrocolloids, 2009, 23, 980-987.	5.6	67
30	The interactions between oil droplets and gel matrix affect the lubrication properties of sheared emulsion-filled gels. Food Hydrocolloids, 2009, 23, 1038-1046.	5.6	59
31	The rational design of semisynthetic peroxidases. Biotechnology and Bioengineering, 2000, 67, 87-96.	1.7	58
32	Effect of gel texture and sucrose spatial distribution on sweetness perception. LWT - Food Science and Technology, 2012, 46, 183-188.	2.5	54
33	Dynamic texture perception, oral processing behaviour and bolus properties of emulsion-filled gels with and without contrasting mechanical properties. Food Hydrocolloids, 2016, 52, 648-660.	5. 6	51
34	Inhomogeneous distribution of fat enhances the perception of fat-related sensory attributes in gelled foods. Food Hydrocolloids, 2012, 27, 448-455.	5.6	50
35	Moving from molecules, to structure, to texture perception. Food Hydrocolloids, 2017, 68, 31-42.	5.6	46
36	Physical Properties Giving the Sensory Perception of Whey Proteins/Polysaccharide Gels. Food Biophysics, 2008, 3, 198-206.	1.4	43

#	Article	IF	CITATIONS
37	Chloroperoxidase-catalyzed enantioselective oxidations in hydrophobic organic media. Biotechnology and Bioengineering, 2001, 72, 523-529.	1.7	41
38	Title is missing!. Topics in Catalysis, 2000, 13, 259-265.	1.3	40
39	Serum release boosts sweetness intensity in gels. Food Hydrocolloids, 2010, 24, 494-501.	5.6	39
40	Emulsion filled polysaccharide gels: Filler particle effects on material properties, oral processing, and sensory texture. Food Hydrocolloids, 2019, 94, 311-325.	5.6	37
41	Highly efficient immobilization of glycosylated enzymes into polyurethane foams. Biotechnology and Bioengineering, 2000, 70, 342-348.	1.7	33
42	Tribological properties of rice starch in liquid and semi-solid food model systems. Food Hydrocolloids, 2016, 58, 184-193.	5.6	30
43	Uncoupling the Impact of Fracture Properties and Composition on Sensory Perception of Emulsionâ€Filled Gels. Journal of Texture Studies, 2016, 47, 92-111.	1.1	29
44	A comparison of the lubrication behavior of whey protein model foods using tribology in linear and elliptical movement. Journal of Texture Studies, 2017, 48, 335-341.	1.1	23
45	Formation, Clearance and Mouthfeel Perception of Oral Coatings Formed by Emulsionâ€Filled Gels. Journal of Texture Studies, 2015, 46, 399-410.	1.1	18
46	Oral Parameters Affecting Ex-vivo Tribology. Biotribology, 2017, 11, 84-91.	0.9	12
47	Investigation of oral gels breakdown using image analysis. Food Hydrocolloids, 2017, 63, 67-76.	5.6	8
48	Discussion session on solid food materials. Food Hydrocolloids, 2006, 20, 432-437.	5.6	7
49	Carrageenan: A Food-Grade and Biocompatible Support for Immobilization Techniques. ChemInform, 2003, 34, no.	0.1	2
50	The rational design of semisynthetic peroxidases. , 2000, 67, 87.		1
51	Improved operational stability of peroxidases by coimmobilization with glucose oxidase. Biotechnology and Bioengineering, 2000, 69, 286-291.	1.7	1