JÃ,rgen Johansen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6540714/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Spatiotemporal coordination of Greatwall-Endos-PP2A promotes mitotic progression. Journal of Cell Biology, 2021, 220, .	5.2	5
2	JASPer controls interphase histone H3S10 phosphorylation by chromosomal kinase JIL-1 in Drosophila. Nature Communications, 2019, 10, 5343.	12.8	18
3	Evidence for a role of spindle matrix formation in cell cycle progression by antibody perturbation. PLoS ONE, 2018, 13, e0208022.	2.5	4
4	H2Av facilitates H3S10 phosphorylation but is not required for heat shock-induced chromatin decondensation or transcriptional elongation. Development (Cambridge), 2017, 144, 3232-3240.	2.5	1
5	Digitor/dASCIZ Has Multiple Roles in Drosophila Development. PLoS ONE, 2016, 11, e0166829.	2.5	15
6	Movement of chromosomes with severed kinetochore microtubules. Protoplasma, 2015, 252, 775-781.	2.1	10
7	Genome-wide analysis of regulation of gene expression and H3K9me2 distribution by JIL-1 kinase mediated histone H3S10 phosphorylation in Drosophila. Nucleic Acids Research, 2014, 42, 5456-5467.	14.5	21
8	Histone H3S10 phosphorylation by the JIL-1 kinase in pericentric heterochromatin and on the fourth chromosome creates a composite H3S10phK9me2 epigenetic mark. Chromosoma, 2014, 123, 273-280.	2.2	8
9	The Spindle Matrix Protein, Chromator, Is a Novel Tubulin Binding Protein That Can Interact with Both Microtubules and Free Tubulin. PLoS ONE, 2014, 9, e103855.	2.5	3
10	Domain Requirements of the JIL-1 Tandem Kinase for Histone H3 Serine 10 Phosphorylation and Chromatin Remodeling in Vivo. Journal of Biological Chemistry, 2013, 288, 19441-19449.	3.4	8
11	The effect ofJIL-1on position-effect variegation is proportional to the total amount of heterochromatin in the genome. Fly, 2013, 7, 129-133.	1.7	2
12	Evidence against a Role for the JIL-1 Kinase in H3S28 Phosphorylation and 14-3-3 Recruitment to Active Genes in Drosophila. PLoS ONE, 2013, 8, e62484.	2.5	7
13	A nuclear-derived proteinaceous matrix embeds the microtubule spindle apparatus during mitosis. Molecular Biology of the Cell, 2012, 23, 3532-3541.	2.1	26
14	H3S10 phosphorylation by the JIL-1 kinase regulates H3K9 dimethylation and gene expression at the white locus in Drosophila. Fly, 2012, 6, 93-97.	1.7	9
15	The chromodomain-containing NH2-terminus of Chromator interacts with histone H1 and is required for correct targeting to chromatin. Chromosoma, 2012, 121, 209-220.	2.2	8
16	Do nuclear envelope and intranuclear proteins reorganize during mitosis to form an elastic, hydrogel-like spindle matrix?. Chromosome Research, 2011, 19, 345-365.	2.2	49
17	The epigenetic H3S10 phosphorylation mark is required for counteracting heterochromatic spreading and gene silencing in Drosophila melanogaster. Journal of Cell Science, 2011, 124, 4309-4317.	2.0	22
18	A Balance Between Euchromatic (JIL-1) and Heterochromatic [SU(VAR)2-5 and SU(VAR)3-9] Factors Regulates Position-Effect Variegation in <i>Drosophila</i> . Genetics, 2011, 188, 745-748.	2.9	13

JÃ,RGEN JOHANSEN

#	Article	IF	CITATIONS
19	<i>JIL-1</i> and <i>Su(var)3-7</i> Interact Genetically and Counteract Each Other's Effect on Position-Effect Variegation in Drosophila. Genetics, 2010, 185, 1183-1192.	2.9	17
20	Phosphorylation of SU(VAR)3–9 by the Chromosomal Kinase JIL-1. PLoS ONE, 2010, 5, e10042.	2.5	21
21	Spatiotemporal control of mitosis by the conserved spindle matrix protein Megator. Journal of Cell Biology, 2009, 184, 647-657.	5.2	111
22	Asator, a tauâ€ŧubulin kinase homolog in <i>Drosophila</i> localizes to the mitotic spindle. Developmental Dynamics, 2009, 238, 3248-3256.	1.8	17
23	Chromator is required for proper microtubule spindle formation and mitosis in Drosophila. Developmental Biology, 2009, 334, 253-263.	2.0	26
24	Polytene chromosome squash methods for studying transcription and epigenetic chromatin modification in Drosophila using antibodies. Methods, 2009, 48, 387-397.	3.8	45
25	The spindle matrix through the cell cycle in Drosophila. Fly, 2009, 3, 213-20.	1.7	9
26	RNA polymerase II-mediated transcription at active loci does not require histone H3S10 phosphorylation in <i>Drosophila</i> . Development (Cambridge), 2008, 135, 2917-2925.	2.5	34
27	The COOH-terminal Domain of the JIL-1 Histone H3S10 Kinase Interacts with Histone H3 and Is Required for Correct Targeting to Chromatin. Journal of Biological Chemistry, 2008, 283, 32741-32750.	3.4	13
28	Ectopic histone H3S10 phosphorylation causes chromatin structure remodeling in <i>Drosophila</i> . Development (Cambridge), 2008, 135, 699-705.	2.5	51
29	Titin in insect spermatocyte spindle fibers associates with microtubules, actin, myosin and the matrix proteins skeletor, megator and chromator. Journal of Cell Science, 2007, 120, 2190-2204.	2.0	43
30	Cell and Molecular Biology of the Spindle Matrix. International Review of Cytology, 2007, 263, 155-206.	6.2	59
31	Loss-of-Function Alleles of the JIL-1 Histone H3S10 Kinase Enhance Position-Effect Variegation at Pericentric Sites in Drosophila Heterochromatin. Genetics, 2007, 176, 1355-1358.	2.9	36
32	Reduced Levels of Su(var)3-9 But Not Su(var)2-5 (HP1) Counteract the Effects on Chromatin Structure and Viability in Loss-of-Function Mutants of the JIL-1 Histone H3S10 Kinase. Genetics, 2007, 177, 79-87.	2.9	23
33	The lamin Dm0 allele Ari3 acts as an enhancer of position effect variegation of the w m4 allele in Drosophila. Genetica, 2007, 129, 339-342.	1.1	10
34	Regulation of chromatin structure by histone H3S10 phosphorylation. Chromosome Research, 2006, 14, 393-404.	2.2	147
35	Mapping the Ca2+-dependent binding of an invertebrate homolog of protein phosphatase 4 regulatory subunit 2 to the small EF-hand protein, calsensin. Biochimica Et Biophysica Acta - Molecular Cell Research, 2006, 1763, 322-329.	4.1	2
36	The JIL-1 histone H3S10 kinase regulates dimethyl H3K9 modifications and heterochromatic spreading in Drosophila. Development (Cambridge), 2006, 133, 229-235.	2.5	103

JÃ,rgen Johansen

#	Article	IF	CITATIONS
37	Loss-Of-Function Alleles of the JIL-1 Kinase Are Strong Suppressors of Position Effect Variegation of the wm4 Allele in Drosophila. Genetics, 2006, 173, 2403-2406.	2.9	29
38	The chromodomain protein, Chromator, interacts with JIL-1 kinase and regulates the structure of Drosophila polytene chromosomes. Journal of Cell Science, 2006, 119, 2332-2341.	2.0	51
39	D-Hillarin, a novel W180-domain protein, affects cytokinesis through interaction with the septin family member Pnut. Journal of Neurobiology, 2005, 64, 157-169.	3.6	12
40	EAST interacts with Megator and localizes to the putative spindle matrix during mitosis inDrosophila. Journal of Cellular Biochemistry, 2005, 95, 1284-1291.	2.6	33
41	JIL-1 kinase, a member of the male-specific lethal (MSL) complex, is necessary for proper dosage compensation of eye pigmentation inDrosophila. Genesis, 2005, 43, 213-215.	1.6	25
42	The JIL-1 kinase regulates the structure of Drosophila polytene chromosomes. Chromosoma, 2005, 114, 173-182.	2.2	61
43	The JIL-1 kinase interacts with lamin Dm0 and regulates nuclear lamina morphology of Drosophila nurse cells. Journal of Cell Science, 2005, 118, 5079-5087.	2.0	20
44	Studying Nuclear Organization in Embryos Using Antibody Tools. , 2004, 247, 215-234.		19
45	Megator, an Essential Coiled-Coil Protein that Localizes to the Putative Spindle Matrix during Mitosis inDrosophila. Molecular Biology of the Cell, 2004, 15, 4854-4865.	2.1	78
46	Chromator, a novel and essential chromodomain protein interacts directly with the putative spindle matrix protein skeletor. Journal of Cellular Biochemistry, 2004, 93, 1033-1047.	2.6	72
47	A Developmentally Regulated Splice Variant from the Complexlola Locus Encoding Multiple Different Zinc Finger Domain Proteins Interacts with the Chromosomal Kinase JIL-1. Journal of Biological Chemistry, 2003, 278, 11696-11704.	3.4	30
48	Genetic and Phenotypic Analysis of Alleles of the Drosophila Chromosomal JIL-1 Kinase Reveals a Functional Requirement at Multiple Developmental Stages. Genetics, 2003, 165, 1341-1354.	2.9	44
49	The JIL-1 Tandem Kinase Mediates Histone H3 Phosphorylation and Is Required for Maintenance of Chromatin Structure in Drosophila. Cell, 2001, 105, 433-443.	28.9	199
50	Jil-1, a Chromosomal Kinase Implicated in Regulation of Chromatin Structure, Associates with the Male Specific Lethal (Msl) Dosage Compensation Complex. Journal of Cell Biology, 2000, 149, 1005-1010.	5.2	142
51	Skeletor, a Novel Chromosomal Protein That Redistributes during Mitosis Provides Evidence for the Formation of a Spindle Matrix. Journal of Cell Biology, 2000, 151, 1401-1412.	5.2	94
52	Molecular cloning and characterization of LKv1, a novel voltage-gated potassium channel in leech. Journal of Neurobiology, 1999, 38, 287-299.	3.6	5
53	Gliarin and macrolin, two novel intermediate filament proteins specifically expressed in sets and subsets of glial cells in leech central nervous system. , 1999, 40, 244-253.		19

54 JIL-1. Molecular Cell, 1999, 4, 129-135.

9.7 163

JÃ,rgen Johansen

#	Article	IF	CITATIONS
55	Antibody identification, chromosome map assignment, and sequence analysis of a Rab escort protein homolog in Drosophila1The sequence data presented here have been submitted to the EMBL/GenBank databases under accession number AF105063.1. Biochimica Et Biophysica Acta - Molecular Cell Research, 1999, 1449, 194-198.	4.1	2
56	Development and pathway formation of peripheral neurons during leech embryogenesis. Journal of Comparative Neurology, 1998, 397, 394-402.	1.6	21
57	Differential expression of the EF-hand calcium-binding protein calsensin in the central nervous system of hirudinid leeches. Cell and Tissue Research, 1996, 286, 357-364.	2.9	2
58	Initial formation and secondary condensation of nerve pathways in the medicinal leech. , 1996, 373, 1-10.		23
59	Remodeling of nuclear architecture during the cell cycle inDrosophila embryos. Journal of Cellular Biochemistry, 1996, 63, 268-279.	2.6	22
60	Filarin, a novel invertebrate intermediate filament protein present in axons and perikarya of developing and mature leech neurons. Journal of Neurobiology, 1995, 27, 227-239.	3.6	19
61	Multiple strategies for directed growth cone extension and navigation of peripheral neurons. Journal of Neurobiology, 1995, 27, 310-325.	3.6	15