AbÃ-lio José F N Sobral

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/654064/publications.pdf

Version: 2024-02-01

144 papers

2,773 citations

28 h-index 233421 45 g-index

144 all docs

144 docs citations

144 times ranked 3844 citing authors

#	Article	IF	CITATIONS
1	Costus speciosus koen leaf extract assisted cs-znx (XÂ=ÂO or S) nanomaterials: Synthesis, characterization and photocatalytic degradation of rr 120 dye under uv and direct sunlight. Journal of Molecular Structure, 2021, 1225, 129176.	3.6	11
2	Synthesis, characterization of gelatin assisted ZnO and its effective utilization of toxic azo dye degradation under direct sunlight. Optical Materials, 2021, 113, 110854.	3.6	21
3	New series of BODIPY dyes: Synthesis, characterization and applications in photovoltaic cells and light-emitting diodes. Dyes and Pigments, 2021, 193, 109517.	3.7	10
4	Fabrication of Hybrid Fe2V4O13/ZnO Heterostructure for Effective Mineralization of Aqueous Methyl Orange Solution. Journal of Cluster Science, 2020, 31, 839-849.	3.3	6
5	Simple BODIPY dyes as suitable electron-donors for organic bulk heterojunction photovoltaic cells. Dyes and Pigments, 2020, 172, 107842.	3.7	21
6	Development and validation of a RP-HPLC method for the simultaneous analysis of paracetamol, ibuprofen, olanzapine, and simvastatin during microalgae bioremediation. MethodsX, 2020, 7, 101083.	1.6	8
7	Exploration of the cellular effects of the high-dose, long-term exposure to coffee roasting product furan and its by-product <i>cis</i> -2-butene-1,4-dial on human and rat hepatocytes. Toxicology Mechanisms and Methods, 2020, 30, 536-545.	2.7	3
8	Synthesis, characterization of porphyrin and CdS modified spherical shaped SiO2 for Reactive Red 120 degradation under direct sunlight. Journal of Molecular Structure, 2020, 1210, 128021.	3.6	14
9	CO2 adsorption and conversion of epoxides catalyzed by inexpensive and active mesoporous structured mixed-phase (anatase/brookite) TiO2. Journal of CO2 Utilization, 2019, 34, 386-394.	6.8	19
10	Synthesis and characterization of g/Ni–SiO2 composite for enhanced hydrogen storage applications. International Journal of Hydrogen Energy, 2019, 44, 23249-23256.	7.1	11
11	Development of Cd3(PO4)2/rGO Coupled Semiconductor System for Effective Mineralization of Basic Violet 10 (BV 10) under UV-A Light. Materials Today: Proceedings, 2019, 15, 471-480.	1.8	4
12	Costus speciosus leaf extract assisted CS-Pt-TiO2 composites: Synthesis, characterization and their bio and photocatalytic applications. Journal of Molecular Structure, 2019, 1195, 787-795.	3.6	18
13	Synthesis, characterization and application of meso-substituted fluorinated boron dipyrromethenes (BODIPYs) with different styryl groups in organic photovoltaic cells. Dyes and Pigments, 2019, 168, 103-110.	3.7	21
14	Bio-based chitosan/gelatin/Ag@ZnO bionanocomposites: synthesis and mechanical and antibacterial properties. Cellulose, 2019, 26, 5347-5361.	4.9	85
15	Catalytic Synthesis of $5\hat{a} \in S$ ubstituted Tetrazoles: Unexpected Reactions and Products. Journal of Heterocyclic Chemistry, 2019, 56, 1613-1621.	2.6	6
16	BODIPY (meso-phenyl-meso) Dimer as Photovoltaic Material. Proceedings (mdpi), 2019, 41, .	0.2	0
17	Paal–Knorr synthesis of pyrroles: from conventional to green synthesis. Catalysis Reviews - Science and Engineering, 2019, 61, 84-110.	12.9	70
18	Bio-based (chitosan/PVA/ZnO) nanocomposites film: Thermally stable and photoluminescence material for removal of organic dye. Carbohydrate Polymers, 2019, 205, 559-564.	10.2	187

#	Article	IF	CITATIONS
19	Characterization of phenolic constituents and evaluation of antioxidant properties of leaves and stems of Eriocephalus africanus. Arabian Journal of Chemistry, 2018, 11, 62-69.	4.9	37
20	Synthesis and characterization of bimetallic nanocomposite and its photocatalytic, antifungal and antibacterial activity. Separation and Purification Technology, 2018, 202, 373-384.	7.9	20
21	Monitoring oil production for biobased feedstock in the microalga Nannochloropsis sp.: a novel method combining the BODIPY BD-C12 fluorescent probe and simple image processing. Journal of Applied Phycology, 2018, 30, 2273-2285.	2.8	7
22	Carbon dioxide adsorption and cycloaddition reaction of epoxides using chitosan–graphene oxide nanocomposite as a catalyst. Journal of Environmental Sciences, 2018, 69, 77-84.	6.1	49
23	Synthesis, physicochemical and optical properties of bis-thiosemicarbazone functionalized graphene oxide. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 188, 183-188.	3.9	24
24	Highly active P25@Pd/C nanocomposite for the degradation of Naphthol Blue Black with visible light. Journal of Molecular Structure, 2018, 1153, 346-352.	3.6	28
25	On the Performance of Hybrid Functionals for Nonâ€linear Optical Properties and Electronic Excitations in Chiral Molecular Crystals: The Case of Butterflyâ€6haped Dicinnamalacetone. ChemPhysChem, 2018, 19, 82-92.	2.1	9
26	Mesoporous zeolite-chitosan composite for enhanced capture and catalytic activity in chemical fixation of CO2. Carbohydrate Polymers, 2018, 198, 401-406.	10.2	67
27	Graphene oxide modified cobalt metallated porphyrin photocatalyst for conversion of formic acid from carbon dioxide. Journal of CO2 Utilization, 2018, 27, 107-114.	6.8	37
28	Gelatin-assisted g-TiO2/BiOI heterostructure nanocomposites for azo dye degradation under visible light. Journal of Environmental Chemical Engineering, 2018, 6, 4282-4288.	6.7	24
29	Chemically modified amino porphyrin/TiO2 for the degradation of Acid Black 1 under day light illumination. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2017, 176, 134-141.	3.9	38
30	Flucytosine analogues obtained through Biginelli reaction as efficient combinative antifungal agents. Microbial Pathogenesis, 2017, 105, 57-62.	2.9	23
31	Double-tailed long chain BODIPYs - Synthesis, characterization and preliminary studies on their use as lipid fluorescence probes. Journal of Molecular Structure, 2017, 1146, 62-69.	3.6	7
32	Synergistic antifungal effect of cyclized chalcone derivatives and fluconazole against <i>Candida albicans</i> . MedChemComm, 2017, 8, 2195-2207.	3.4	32
33	Solar and visible active amino porphyrin/SiO2ZnO for the degradation of naphthol blue black. Journal of Physics and Chemistry of Solids, 2017, 111, 364-371.	4.0	30
34	Carbon dioxide capture and conversion by an environmentally friendly chitosan based meso-tetrakis(4-sulfonatophenyl) porphyrin. Carbohydrate Polymers, 2017, 175, 575-583.	10.2	52
35	Photophysical Characterization and in Vitro Phototoxicity Evaluation of 5,10,15,20-Tetra(quinolin-2-yl)porphyrin as a Potential Sensitizer for Photodynamic Therapy. Molecules, 2016, 21, 439.	3.8	23
36	Facile synthesis of Y2S3/ZnO nanocomposite and its catalytic performance in the degradation of Methylene Blue using UV-A/solar illumination. Journal of Water Process Engineering, 2016, 12, 32-40.	5 . 6	9

#	Article	lF	Citations
37	Synthesis, characterization and daylight active photocatalyst with antiphotocorrosive property for detoxification of azo dyes. Separation and Purification Technology, 2016, 164, 170-181.	7.9	20
38	Effects of biochar addition to estuarine sediments. Journal of Soils and Sediments, 2016, 16, 2482-2491.	3.0	13
39	Mononuclear transition metal complexes containing iodo-imidazole ring endowed with potential anti-Candida activity. Medicinal Chemistry Research, 2016, 25, 2557-2566.	2.4	8
40	Synthesis, characterization and excellent catalytic activity of modified ZnO photocatalyst for RR 120 dye degradation under UV-A and solar light illumination. Journal of Water Process Engineering, 2016, 13, 6-15.	5.6	11
41	Cycloaddition of CO ₂ to epoxides using di-nuclear transition metal complexes as catalysts. New Journal of Chemistry, 2016, 40, 4974-4980.	2.8	27
42	New transition metal complexes containing imidazole rings endowed with potential antiamoebic activity. MedChemComm, 2016, 7, 982-989.	3 . 4	4
43	Synthesis, structure and magnetic properties of mono-, dinuclear andÂpolymeric compounds of transition metals with 4-amino-3,5-di-2-pyridyl-4H-1,2,4-triazole. Journal of Molecular Structure, 2016, 1108, 278-287.	3.6	3
44	Sn loaded Au–ZnO photocatalyst for the degradation of AR 18 dye under UV-A light. Journal of Industrial and Engineering Chemistry, 2016, 33, 51-58.	5.8	43
45	Studies of Carbon Dioxide Capture on Porous Chitosan Derivative. Journal of Dispersion Science and Technology, 2016, 37, 155-158.	2.4	27
46	Covalently Linked Free-Base and Metallo-Bis-Porphyrins: Chemistry and Diversity. Current Organic Chemistry, 2015, 19, 599-651.	1.6	7
47	Enhanced chitosan–DNA interaction by 2-acrylamido-2-methylpropane coupling for an efficient transfection in cancer cells. Journal of Materials Chemistry B, 2015, 3, 3465-3475.	5. 8	50
48	Porphyrins as nanoreactors in the carbon dioxide capture and conversion: a review. Journal of Materials Chemistry A, 2015, 3, 19615-19637.	10.3	131
49	Imidazole clubbed 1,3,4-oxadiazole derivatives as potential antifungal agents. Bioorganic and Medicinal Chemistry, 2015, 23, 4172-4180.	3.0	71
50	Experimental and theoretical studies of the second- and third-order NLO properties of a semi-organic compound: 6-Aminoquinolinium iodide monohydrate. Chemical Physics, 2014, 428, 67-74.	1.9	35
51	Antitumoural and antiangiogenic activity of Portuguese propolis in in vitro and in vivo models. Journal of Functional Foods, 2014, 11, 160-171.	3.4	34
52	Synthesis and polymorphism evaluation of the 3,5-bis(decyloxy)benzaldehyde. Journal of Thermal Analysis and Calorimetry, 2014, 117, 1375-1383.	3.6	1
53	Mutual diffusion of sodium hyaluranate in aqueous solutions. Journal of Chemical Thermodynamics, 2014, 71, 14-18.	2.0	4
54	Diffusion of sodium alginate in aqueous solutions at T=298.15K. Journal of Chemical Thermodynamics, 2014, 74, 263-268.	2.0	7

#	Article	IF	Citations
55	Mutual diffusion coefficients in systems containing the nickel ion. Comptes Rendus - Mecanique, 2013, 341, 417-420.	2.1	5
56	Interaction between lactose and cadmium chloride in aqueous solutions as seen by diffusion coefficients measurements. Journal of Chemical Thermodynamics, 2013, 61, 79-82.	2.0	4
57	Effect of the mean distance of closest approach of ions on the diffusion coefficient calculations in aqueous solutions of silver salts. Comptes Rendus Chimie, 2013, 16, 469-475.	0.5	0
58	Effect of lactose on the diffusion of ferric sulfate in aqueous solutions at $25 {\rm \^{A}}^{\circ}$ C. Journal of Chemical Thermodynamics, 2013, 59, 135-138.	2.0	5
59	Reversible sequestering of CO2 on a multiporous crystalline framework of 2-quinolyl-porphyrin. Tetrahedron Letters, 2013, 54, 2449-2451.	1.4	14
60	Crystal structure of chloro-(5,10,15,20-tetraphenylporphyrinato)-manganese, C44H28ClMnN4. Zeitschrift Fur Kristallographie - New Crystal Structures, 2013, 228, 138-140.	0.3	0
61	1-[(E)-Anthracen-9-ylmethylidene]-2-(2,4-dinitrophenyl)hydrazine. Acta Crystallographica Section E: Structure Reports Online, 2013, 69, o705-o705.	0.2	0
62	Poly[î¼ ₂ -aqua-î¼ ₄ -[1-(4-chlorophenyl)-4,4,4-trifluorobutane-1,3-dionato]-potassium]. Acta Crystallographica Section E: Structure Reports Online, 2013, 69, m422-m423.	0.2	2
63	4,7-Diphenyl-1,10-phenanthroline methanol hemisolvate. Acta Crystallographica Section E: Structure Reports Online, 2013, 69, o1018-o1018.	0.2	1
64	5,10,15,20-Tetrakis(4-acetyloxyphenyl)porphyrin including an unknown solvate. Acta Crystallographica Section E: Structure Reports Online, 2012, 68, o3462-o3463.	0.2	1
65	2-Quinolinecarboxaldehyde: Polymorphic behavior of a small rigid molecule. Journal of Molecular Structure, 2012, 1030, 67-74.	3.6	6
66	A Comparison between the Diffusion Properties of Theophylline/β-Cyclodextrin and Theophylline/2-Hydroxypropyl-β-Cyclodextrin in Aqueous Systems. Journal of Chemical & Data, 2012, 57, 1881-1886.	1.9	28
67	Reorganization of Self-Assembled Dipeptide Porphyrin J-Aggregates in Water–Ethanol Mixtures. Journal of Physical Chemistry B, 2012, 116, 2396-2404.	2.6	27
68	Mutual and self-diffusion of charged porphyrines in aqueous solutions. Journal of Chemical Thermodynamics, 2012, 47, 312-319.	2.0	14
69	Calculations of Diffusion Coefficients of Iron Salts in Aqueous Solutions at 298.15 K: A Useful Tool for the Knowledge of the Structure of these Systems. Acta Chimica Slovenica, 2012, 59, 353-8.	0.6	2
70	Synthesis and Characterization of Co-polymers Based on Methyl Methacrylate and 2-Hexyl Acrylate Containing Naphthopyrans for a Light-Sensitive Contact Lens. Journal of Biomaterials Science, Polymer Edition, 2011, 22, 139-152.	3.5	10
71	Transport properties of aqueous solutions of sodium alginate at 298.15K. Food Chemistry, 2011, 125, 1213-1218.	8.2	19
72	Interaction between calcium chloride and some carbohydrates as seen by mutual diffusion at $25 \text{\AA}^{\circ}\text{C}$ and $37 \text{\AA}^{\circ}\text{C}$. Food Chemistry, 2011 , 124 , 842 - 849 .	8.2	15

#	Article	IF	CITATIONS
7 3	Estimation of the mean distance of closest approach of some heavy metal ions in aqueous solutions: some experimental and theoretical calculations. Molecular Simulation, 2011, 37, 510-514.	2.0	1
74	Diaqua(6-bromopicolinato-lº2N,O)(nitrato-lº2O,O)copper(II). Acta Crystallographica Section E: Structure Reports Online, 2011, 67, m160-m160.	0.2	1
7 5	Estimation of the mean distance of closest approach of actinides and lanthanides ions in aqueous solutions: some experimental and theoretical calculations. Acta Chimica Slovenica, 2011, 58, 797-801.	0.6	2
76	Ternary mutual diffusion of isoniazid in aqueous sodium chloride, sodium hydroxide, and hydrochloric acid at T=298.15K. Journal of Chemical Thermodynamics, 2010, 42, 886-890.	2.0	6
77	Mean distance of closest approach of alkaline-earth metals ions in aqueous solutions: Experimental and theoretical calculations. Journal of Molecular Liquids, 2010, 156, 124-127.	4.9	4
78	A New Nonconjugated Naphthalene Derivative of <i>Meso</i> â€tetraâ€(3â€hydroxy)â€phenylâ€porphyrin as a Potential Sensitizer for Photodynamic Therapy. Photochemistry and Photobiology, 2010, 86, 1147-1153.	2.5	16
79	Diffusion coefficients of sodium fluoride in aqueous solutions at 298.15 k and 310.15 k. Acta Chimica Slovenica, 2010, 57, 410-4.	0.6	5
80	1,5-Bis(2,5-dimethyl-1H-pyrrol-1-yl)naphthalene. Acta Crystallographica Section E: Structure Reports Online, 2009, 65, o2618-o2618.	0.2	0
81	Early Events in Photodynamic Therapy: Chemical and Physical Changes in a POPC:Cholesterol Bilayer due to Hematoporphyrin IXâ€mediated Photosensitization. Photochemistry and Photobiology, 2009, 85, 1409-1417.	2.5	20
82	Mean distance of closest approach of potassium, cesium and rubidium ions in aqueous solutions: Experimental and theoretical calculations. Journal of Molecular Liquids, 2009, 146, 69-73.	4.9	11
83	Conformational Studies of Poly(9,9-dialkylfluorene)s in Solution Using NMR Spectroscopy and Density Functional Theory Calculations. Journal of Physical Chemistry B, 2009, 113, 11808-11821.	2.6	28
84	N,N′-Bis[(E)-(6-methyl-2-pyridyl)methylene]hexane-1,6-diamine. Acta Crystallographica Section E: Structure Reports Online, 2009, 65, o1255-o1255.	0.2	1
85	2,2′,5,5′-Tetramethyl-1,1′-(hexane-1,6-diyl)di-1H-pyrrole. Acta Crystallographica Section E: Structure Reports Online, 2009, 65, o1594-o1594.	0.2	0
86	Diffusion coefficients and electrical conductivities for calcium chloride aqueous solutions at 298.15K and 310.15K. Electrochimica Acta, 2008, 54, 192-196.	5.2	41
87	Ketotifen controlled release from cellulose acetate propionate and cellulose acetate butyrate membranes. Journal of Materials Science: Materials in Medicine, 2008, 19, 677-682.	3.6	8
88	X-ray Diffraction and DFT Studies of 2-Methoxy-5-phenylaniline. Journal of Chemical Crystallography, 2008, 38, 295-299.	1.1	4
89	C–H···π and C=O···π Intermolecular Interactions in Dibenzyl-3,6-dimethylpyrazine-2,5-dicarboxylate. Journal of Chemical Crystallography, 2008, 38, 301-303.	1.1	7
90	Self-aggregation of free base porphyrins in aqueous solution and in DMPC vesicles. Biophysical Chemistry, 2008, 133, 1-10.	2.8	80

#	Article	IF	Citations
91	Mean distance of closest approach of ions: Lithium salts in aqueous solutions. Journal of Molecular Liquids, 2008, 140, 73-77.	4.9	9
92	Experimental and ab-initio studies of the spectroscopic properties of N,N′,N″-triphenylguanidine and N,N′,N″-triphenylguanidinium chloride. Journal of Molecular Structure, 2008, 878, 169-176.	3.6	12
93	Oxoperoxo Vanadium(V) Complexes of l-Lactic Acid: Density Functional Theory Study of Structure and NMR Chemical Shifts. Inorganic Chemistry, 2008, 47, 7317-7326.	4.0	28
94	Luminescence from cerium(iii) acetate complexes in aqueous solution: considerations on the nature of carboxylate binding to trivalent lanthanides. New Journal of Chemistry, 2008, 32, 1531.	2.8	31
95	Ethyl 3,5-dimethyl-1H-pyrrole-2-carboxylate. Acta Crystallographica Section E: Structure Reports Online, 2008, 64, o1989-o1989.	0.2	7
96	Synthesis and structural characterization of a new self-assembled disulfide linked meso-tetrakis-porphyrin macromolecular array. Journal of Porphyrins and Phthalocyanines, 2008, 12, 845-848.	0.8	4
97	(Benzoato-κ2O,O′)(quinoline-2-carboxylato-κ2N,O)(quinoline-2-carboxylic acid-κ2N,O)manganese(II). Acta Crystallographica Section E: Structure Reports Online, 2008, 64, m258-m258.	0.2	2
98	Bis[(2-quinolyl)methanediol-lº2N,O](sulfato-lºO)copper(II) dihydrate. Acta Crystallographica Section E: Structure Reports Online, 2008, 64, m394-m394.	0.2	4
99	(Benzoato-κ2O,O′)(quinoline-2-carboxylato-κ2N,O)(quinoline-2-carboxylic acid-κ2N,O)copper(II). Acta Crystallographica Section E: Structure Reports Online, 2008, 64, m829-m830.	0.2	4
100	4-Amino-3,5-di-2-pyridyl-4 <i>H</i> -1,2,4-triazole. Acta Crystallographica Section E: Structure Reports Online, 2008, 64, o1762-o1762.	0.2	6
101	Crystal structure of 2,5-dimethyl-1-(4-carboxyphenyl)pyrrole, C13H13NO2. Zeitschrift Fur Kristallographie - New Crystal Structures, 2008, 223, 33-34.	0.3	1
102	Synthesis of flexible dimeric meso-tetrakis-porphyrins. Tetrahedron Letters, 2007, 48, 3145-3149.	1.4	5
103	Diffusion coefficients of aluminium chloride in aqueous solutions at 298.15, 303.15 and 315.15K. Electrochimica Acta, 2007, 52, 6450-6455.	5.2	11
104	Interactions of copper (II) chloride with sucrose, glucose, and fructose in aqueous solutions. Journal of Molecular Structure, 2007, 826, 113-119.	3.6	14
105	Density functional and X-ray diffraction studies of bis(isocinchomeronic acid) trihydrated. Journal of Molecular Structure, 2007, 837, 58-62.	3.6	11
106	1-(4-Acetylphenyl)-2,5-dimethyl-1H-pyrrole. Acta Crystallographica Section E: Structure Reports Online, 2007, 63, o4233-o4233.	0.2	0
107	Dimer Formation in 4-Benzyl-5-Methoxymethyl-3-Methyl-1H-Pyrrole-2-Carboxylic Acid Benzyl Ester. Journal of Chemical Crystallography, 2007, 37, 695-698.	1.1	7
108	Interactions of Copper (II) Chloride with βâ€Cyclodextrin in Aqueous Solutions. Journal of Carbohydrate Chemistry, 2006, 25, 173-185.	1.1	31

#	Article	IF	CITATIONS
109	Effect of different electrolytes on the swelling properties of calyx[4]pyrrole-containing polyacrylamide membranes. European Polymer Journal, 2006, 42, 2059-2068.	5.4	11
110	Mean distance of closest approach of ions: Sodium salts in aqueous solutions. Journal of Molecular Liquids, 2006, 128, 134-139.	4.9	14
111	Association between ammonium monovanadate and \hat{l}^2 -cyclodextrin as seen by NMR and transport techniques. Polyhedron, 2006, 25, 3581-3587.	2.2	36
112	Self-association of free base porphyrins with aminoacid substituents in AOT reverse micelles. Journal of Photochemistry and Photobiology A: Chemistry, 2006, 178, 225-235.	3.9	13
113	Experimental and calculated structural parameters of 4-(2-methoxycarbonyl-ethyl)-3,5-dimethyl-1H-pyrrole-2-carboxylic acid benzyl ester. Journal of Molecular Structure, 2006, 785, 32-36.	3.6	3
114	Synthesis of meso-Diethyl-2,2'-dipyrromethane in Water. An Experiment in Green Organic Chemistry. Journal of Chemical Education, 2006, 83, 1665.	2.3	16
115	Lipophilic porphyrin microparticles induced by AOT reverse micelles. Biophysical Chemistry, 2006, 119, 121-126.	2.8	14
116	Singlet and triplet energy transfer in a bichromophoric system with anthracene covalently linked through sulfonamide to a meso-tetraphenylporphyrin. Journal of Photochemistry and Photobiology A: Chemistry, 2005, 172, 151-160.	3.9	11
117	Electrochemical and spectroelectrochemical characterization of meso-tetra-alkyl porphyrins. Electrochimica Acta, 2005, 50, 2445-2451.	5.2	26
118	tert-Butyl 4-[2-(methoxycarbonyl)ethyl]-3,5-dimethyl-1H-pyrrole-2-carboxylate. Acta Crystallographica Section E: Structure Reports Online, 2005, 61, o575-o577.	0.2	0
119	Self-organization of a sulfonamido-porphyrin in Langmuir monolayers and Langmuir–Blodgett films. Physical Chemistry Chemical Physics, 2005, 7, 3874.	2.8	26
120	Diffusion Coefficients of Copper Chloride in Aqueous Solutions at 298.15 K and 310.15 K. Journal of Chemical &	1.9	40
121	Synthesis of Meso-Octamethylporphyrinogen: An Undergraduate Laboratory Mini-Scale Experiment in Organic Heterocyclic Chemistry. Journal of Chemical Education, 2005, 82, 618.	2.3	4
122	A new polymorph of 2-bromo-5-hydroxybenzaldehyde. Acta Crystallographica Section E: Structure Reports Online, 2004, 60, o84-o85.	0.2	1
123	Electric polarization effects on the electronic spectral shift of centrosymmetric compounds. Chemical Physics, 2004, 300, 267-275.	1.9	17
124	Self-Aggregation of Lipophilic Porphyrins in Reverse Micelles of Aerosol OT. Journal of Physical Chemistry B, 2004, 108, 11344-11356.	2.6	36
125	One-step synthesis of dipyrromethanes in water. Tetrahedron Letters, 2003, 44, 3971-3973.	1.4	91
126	R_{f 4}^{f 4}(30) rectangular rings in 2,5-dioxopiperazine-1,4-diacetic acid. Acta Crystallographica Section C: Crystal Structure Communications, 2003, 59, o562-o563.	0.4	5

#	Article	IF	CITATIONS
127	Dimethyl iminiodiacetate chloride. Acta Crystallographica Section E: Structure Reports Online, 2003, 59, 07-08.	0.2	1
128	Ethyl 4-acetyl-3,5-dimethyl-1H-pyrrole-2-carboxylate. Acta Crystallographica Section E: Structure Reports Online, 2003, 59, o94-o96.	0.2	4
129	Improved powder diffraction data for two cholesterol derivatives. Powder Diffraction, 2003, 18, 306-308.	0.2	3
130	New sulfonamide and sulfonic ester porphyrins as sensitizers for photodynamic therapy. Journal of Porphyrins and Phthalocyanines, 2002, 06, 456-462.	0.8	14
131	Ethyl 4-dodecyl-3,5-dimethyl-1H-pyrrole-2-carboxylate: intermolecular interactions in an amphiphilic pyrrole. Acta Crystallographica Section C: Crystal Structure Communications, 2002, 58, o572-o574.	0.4	10
132	Hydrogen-bonding and Câ€"HÏ€ interactions in ethyl 4-acetyl-5-methyl-3-phenyl-1H-pyrrole-2-carboxylate monohydrate. Acta Crystallographica Section C: Crystal Structure Communications, 2002, 58, o685-o687.	0.4	3
133	Ethyl 3,5-dimethyl-4-phenyl-1H-pyrrole-2-carboxylate. Acta Crystallographica Section C: Crystal Structure Communications, 2002, 58, o721-o723.	0.4	5
134	The manganese complex of 2,3,7,8,12,13,17,18-octaphenylporphyrin as epoxidation catalyst. Journal of Porphyrins and Phthalocyanines, 2001, 05, 428-430.	0.8	19
135	5,15-Diaryl-β-substituted-porphyrinato-manganese(III) chlorides as probes for structure–activity relationships in porphyrin-based epoxidation catalysts. Journal of Porphyrins and Phthalocyanines, 2001, 05, 861-866.	0.8	21
136	C—Hπ interactions in 9-(n-dodecylaminomethyl)anthracene. Acta Crystallographica Section C: Crystal Structure Communications, 2000, 56, 1136-1138.	0.4	2
137	Benzyl 5-carboxy-4-ethyl-3-methylpyrrole-2-carboxylate. Acta Crystallographica Section C: Crystal Structure Communications, 2000, 56, 1263-1264.	0.4	2
138	New Procedures for the Synthesis and Analysis of 5,10,15,20-Tetrakis(sulphophenyl)porphyrins and Derivatives through Chlorosulphonation. Heterocycles, 1996, 43, 829.	0.7	88
139	Chlorine sensing properties of porphyrin thin films. Thin Solid Films, 1996, 284-285, 911-914.	1.8	34
140	The molecular electronic properties of a novel tetraphenylporphyrin derivative â€. International Journal of Electronics, 1994, 77, 957-962.	1.4	9
141	An investigation of the optical properties of tetraphenylporphyrin derivatives in Langmuir and Langmuir-Blodgett films. Thin Solid Films, 1994, 243, 581-586.	1.8	27
142	Metal-assisted reactions. Part 22. Synthesis of perhalogenated prophyrins and their use as oxidation catalysts. Tetrahedron Letters, 1991, 32, 1355-1358.	1.4	64
143	Synthesis and crystal structure of new phase-transfer catalysts based on 1,8-diazabicyclo[5.4.0]undec-7-ene and 1,5-diazabicyclo[4.3.0]non-5-ene., 0,, 28-30.		0
144	Bioremediation Using Microalgae and Circular Economy Approach: A Case Study., 0,,.		1