Franziska Jundt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6540407/publications.pdf

Version: 2024-02-01

49 papers

3,289 citations

218592 26 h-index 254106 43 g-index

50 all docs

50 docs citations

50 times ranked

3793 citing authors

#	Article	IF	CITATIONS
1	Activated Notch1 signaling promotes tumor cell proliferation and survival in Hodgkin and anaplastic large cell lymphoma. Blood, 2002, 99, 3398-3403.	0.6	377
2	Aberrantly expressed c-Jun and JunB are a hallmark of Hodgkin lymphoma cells, stimulate proliferation and synergize with NF-kappaB. EMBO Journal, 2002, 21, 4104-4113.	3. 5	323
3	Overexpression of I Kappa B Alpha Without Inhibition of NF-κB Activity and Mutations in the I Kappa B Alpha Gene in Reed-Sternberg Cells. Blood, 1999, 94, 3129-3134.	0.6	249
4	Jagged1-induced Notch signaling drives proliferation of multiple myeloma cells. Blood, 2004, 103, 3511-3515.	0.6	203
5	c-FLIP Mediates Resistance of Hodgkin/Reed-Sternberg Cells to Death Receptor–induced Apoptosis. Journal of Experimental Medicine, 2004, 199, 1041-1052.	4.2	187
6	Intrinsic inhibition of transcription factor E2A by HLH proteins ABF-1 and Id2 mediates reprogramming of neoplastic B cells in Hodgkin lymphoma. Nature Immunology, 2006, 7, 207-215.	7.0	168
7	Inhibition of NF-κB essentially contributes to arsenic-induced apoptosis. Blood, 2003, 102, 1028-1034.	0.6	149
8	A rapamycin derivative (everolimus) controls proliferation through down-regulation of truncated CCAAT enhancer binding protein \hat{l}^2 and NF- \hat{l}^2 B activity in Hodgkin and anaplastic large cell lymphomas. Blood, 2005, 106, 1801-1807.	0.6	139
9	Hodgkin/Reed-Sternberg Cells Induce Fibroblasts to Secrete Eotaxin, a Potent Chemoattractant for T Cells and Eosinophils. Blood, 1999, 94, 2065-2071.	0.6	137
10	Elevated NF-κB p50 complex formation and Bcl-3 expression in classical Hodgkin, anaplastic large-cell, and other peripheral T-cell lymphomas. Blood, 2005, 106, 4287-4293.	0.6	114
11	Sp1 as G1 cell cycle phase specific transcription factor in epithelial cells. Oncogene, 2002, 21, 1485-1492.	2.6	99
12	Aberrant expression of the Th2 cytokine IL-21 in Hodgkin lymphoma cells regulates STAT3 signaling and attracts Treg cells via regulation of MIP-3α. Blood, 2008, 112, 3339-3347.	0.6	99
13	Stroma-Mediated Dysregulation of Myelopoiesis in Mice Lacking lκBα. Immunity, 2005, 22, 479-491.	6.6	97
14	Loss of PU.1 expression is associated with defective immunoglobulin transcription in Hodgkin and Reed-Sternberg cells of classical Hodgkin disease. Blood, 2002, 99, 3060-3062.	0.6	93
15	Pathogenic Long-Lived Plasma Cells and Their Survival Niches in Autoimmunity, Malignancy, and Allergy. Journal of Immunology, 2012, 189, 5105-5111.	0.4	87
16	Differential Eµ enhancer activity and expression of BOB.1/OBF.1, Oct2, PU.1, and immunoglobulin in reactive B-cell populations, B-cell non-Hodgkin lymphomas, and Hodgkin lymphomas. Journal of Pathology, 2004, 202, 60-69.	2.1	81
17	Interactions between Muscle and Bone—Where Physics Meets Biology. Biomolecules, 2020, 10, 432.	1.8	79
18	Notch is an essential upstream regulator of NF-κB and is relevant for survival of Hodgkin and Reed–Sternberg cells. Leukemia, 2012, 26, 806-813.	3.3	74

#	Article	IF	CITATIONS
19	Aberrant expression of Notch1 interferes with the B-lymphoid phenotype of neoplastic B cells in classical Hodgkin lymphoma. Leukemia, 2008, 22, 1587-1594.	3.3	72
20	A Novel Mouse Model for Multiple Myeloma (MOPC315.BM) That Allows Noninvasive Spatiotemporal Detection of Osteolytic Disease. PLoS ONE, 2012, 7, e51892.	1.1	61
21	Notch Signaling in Leukemias and Lymphomas. Current Molecular Medicine, 2008, 8, 51-59.	0.6	50
22	High-level expression of Mastermind-like 2 contributes to aberrant activation of the NOTCH signaling pathway in human lymphomas. Oncogene, 2011, 30, 1831-1840.	2.6	47
23	Notch pathway inhibition controls myeloma bone disease in the murine MOPC315.BM model. Blood Cancer Journal, 2014, 4, e217-e217.	2.8	38
24	Notch inhibition blocks multiple myeloma cell-induced osteoclast activation. Leukemia, 2008, 22, 2273-2277.	3.3	33
25	Notch and NF-κB Signaling Pathways in the Biology of Classical Hodgkin Lymphoma. Current Molecular Medicine, 2011, 11, 236-245.	0.6	32
26	NOTCH Signaling Is Activated through Mechanical Strain in Human Bone Marrow-Derived Mesenchymal Stromal Cells. Stem Cells International, 2019, 2019, 1-13.	1.2	29
27	Eosinophils and Megakaryocytes Support the Early Growth of Murine MOPC315 Myeloma Cells in Their Bone Marrow Niches. PLoS ONE, 2014, 9, e109018.	1.1	27
28	Up-regulated <i>MSI2</i> is associated with more aggressive chronic myeloid leukemia. Leukemia and Lymphoma, 2015, 56, 2105-2113.	0.6	23
29	Overexpression of I Kappa B Alpha Without Inhibition of NF-κB Activity and Mutations in the I Kappa B Alpha Gene in Reed-Sternberg Cells. Blood, 1999, 94, 3129-3134.	0.6	21
30	PAX5 overexpression is not enough to reestablish the mature B-cell phenotype in classical Hodgkin lymphoma. Leukemia, 2014, 28, 213-216.	3.3	20
31	Nanogels Enable Efficient miRNA Delivery and Target Gene Downregulation in Transfection-Resistant Multiple Myeloma Cells. Biomacromolecules, 2019, 20, 916-926.	2.6	14
32	Trimethoprim-Sulfamethoxazole Exacerbates Posthypoxic Action Myoclonus in a Patient with Suspicion of Pneumocystis jiroveci Infection. Infection, 2004, 32, 176-178.	2.3	13
33	Transcriptional control of human papillomavirus type 18 oncogene expression in different cell lines: Role of transcription factor YY1. Virus Genes, 1995, 11, 53-58.	0.7	11
34	Loss of bHLH transcription factor E2A activity in primary effusion lymphoma confers resistance to apoptosis. British Journal of Haematology, 2007, 137, 342-348.	1.2	11
35	Mechanical loading prevents bone destruction and exerts anti-tumor effects in the MOPC315.BM.Luc model of myeloma bone disease. Acta Biomaterialia, 2021, 119, 247-258.	4.1	9
36	Eukaryotic initiation factor 2Â phosphorylation is required for B-cell maturation and function in mice. Haematologica, 2011, 96, 1261-1268.	1.7	5

#	Article	IF	CITATIONS
37	Impact of whole-body vibration exercise on physical performance and bone turnover in patients with monoclonal gammopathy of undetermined significance. Journal of Bone Oncology, 2020, 25, 100323.	1.0	5
38	ll $^{\circ}$ Bl $^{\pm}$ is required for marginal zone B cell lineage development. European Journal of Immunology, 2008, 38, 2096-2105.	1.6	3
39	An Early Myeloma Bone Disease Model in Skeletally Mature Mice as a Platform for Biomaterial Characterization of the Extracellular Matrix. Journal of Oncology, 2020, 2020, 1-12.	0.6	3
40	Prevention of Bone Destruction by Mechanical Loading Is Not Enhanced by the Bruton's Tyrosine Kinase Inhibitor CC-292 in Myeloma Bone Disease. International Journal of Molecular Sciences, 2021, 22, 3840.	1.8	3
41	Hodgkin/Reed-Sternberg Cells Induce Fibroblasts to Secrete Eotaxin, a Potent Chemoattractant for T Cells and Eosinophils. Blood, 1999, 94, 2065-2071.	0.6	2
42	Hematopoietic Cell Lines and Patient Samples Show a Correlation Between Upregulated MSI2 and BCR-ABL Expression. Blood, 2013, 122, 2618-2618.	0.6	1
43	Manipulation of the Notch Pathway by \hat{I}^3 -Secretase Inhibitors as a Novel Therapeutic Approach in Multiple Myeloma Blood, 2004, 104, 645-645.	0.6	0
44	The Notch Ligand Jagged1 Causes a Myeloproliferative Disorder in Mice Lacking lκBα Blood, 2005, 106, 1226-1226.	0.6	0
45	A Novel Notch Pathway Inhibitor Blocks Osteoclast Activity and Synergistically Induces Apoptosis with the Proteasome Inhibitor Bortezomib in Multiple Myeloma Cells Blood, 2007, 110, 1522-1522.	0.6	0
46	High-Level Expression of Mastermind-Like 2 (MAML2) Contributes to Aberrant Activation of the NOTCH Signaling Pathway In Human Lymphomas. Blood, 2010, 116, 2685-2685.	0.6	0
47	Targeting Notch and Hedgehog Embryonic Signaling Pathways Has Potent Anti-Tumor Activity in Myeloma and Is Effective in Myeloma Bone Disease Blood, 2012, 120, 2938-2938.	0.6	0
48	The Notch Target Genes Hey1 and Hes7 Transcriptionally Suppress Gli1 Expression and Hedgehog Signaling in Hodgkin-Reed/Sternberg Cells of Classical Hodgkin Lymphoma: A Novel Mechanism of Drug Resistance. Blood, 2014, 124, 275-275.	0.6	0
49	Mechanical Loading Shows Anti-Myeloma Effects While Rescuing Bone Loss with Net Bone Formation in a Myeloma Bone Disease Murine Model. Blood, 2018, 132, 3164-3164.	0.6	O