
Alan Jiwan Yun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6540344/publications.pdf Version: 2024-02-01

Διαν Ινωαν Υιιν

#	Article	IF	CITATIONS
1	Mixed-Valence iron phosphate as an effective catalytic host for the High-Rate Lithium-Sulfur battery. Chemical Engineering Journal, 2022, 435, 134814.	12.7	8
2	Recent Progress in Carbon Electrodes for Efficient and Cost-Benign Perovskite Optoelectronics. Electronic Materials Letters, 2022, 18, 232-255.	2.2	9
3	Evolution of the Electronic Traps in Perovskite Photovoltaics during 1000 h at 85 °C. ACS Applied Energy Materials, 2022, 5, 7192-7198.	5.1	13
4	Identifying the Association between Surface Heterogeneity and Electrochemical Properties in Graphite. Nanomaterials, 2021, 11, 1813.	4.1	6
5	3D Meshlike Polyacrylamide Hydrogel as a Novel Binder System via in situ Polymerization for Highâ€Performance Siâ€Based Electrode. Advanced Materials Interfaces, 2020, 7, 1901475.	3.7	31
6	A Cu ₂ O–CuSCN Nanocomposite as a Hole-Transport Material of Perovskite Solar Cells for Enhanced Carrier Transport and Suppressed Interfacial Degradation. ACS Applied Energy Materials, 2020, 3, 7572-7579.	5.1	52
7	Metalâ€Coordination Mediated Polyacrylate for High Performance Silicon Microparticle Anode. Batteries and Supercaps, 2020, 3, 1287-1295.	4.7	15
8	Incorporation of Lithium Fluoride Restraining Thermal Degradation and Photodegradation of Organometal Halide Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 50418-50425.	8.0	27
9	CuCrO2 Nanoparticles Incorporated into PTAA as a Hole Transport Layer for 85 °C and Light Stabilities in Perovskite Solar Cells. Nanomaterials, 2020, 10, 1669.	4.1	33
10	Highly effective III-V solar cells by controlling the surface roughnesses. Current Applied Physics, 2020, 20, 899-903.	2.4	6
11	Triamineâ€Based Aromatic Cation as a Novel Stabilizer for Efficient Perovskite Solar Cells. Advanced Functional Materials, 2019, 29, 1905190.	14.9	48
12	Methylammonium-chloride post-treatment on perovskite surface and its correlation to photovoltaic performance in the aspect of electronic traps. Journal of Applied Physics, 2019, 126, .	2.5	23
13	Recent Progress in Inorganic Hole Transport Materials for Efficient and Stable Perovskite Solar Cells. Electronic Materials Letters, 2019, 15, 505-524.	2.2	62
14	Aminosilaneâ€Modified CuGaO ₂ Nanoparticles Incorporated with CuSCN as a Holeâ€Transport Layer for Efficient and Stable Perovskite Solar Cells. Advanced Materials Interfaces, 2019, 6, 1901372.	3.7	43
15	Electronic Traps and Their Correlations to Perovskite Solar Cell Performance via Compositional and Thermal Annealing Controls. ACS Applied Materials & Interfaces, 2019, 11, 6907-6917.	8.0	63
16	Efficient Type-II Heterojunction Nanorod Sensitized Solar Cells Realized by Controlled Synthesis of Core/Patchy-Shell Structure and CdS Cosensitization. ACS Applied Materials & Interfaces, 2019, 11, 19104-19114.	8.0	18
17	Origins of Efficient Perovskite Solar Cells with Low-Temperature Processed SnO ₂ Electron Transport Layer. ACS Applied Energy Materials, 2019, 2, 3554-3560.	5.1	73
18	Interfacial Modification and Defect Passivation by the Cross-Linking Interlayer for Efficient and Stable CuSCN-Based Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 46818-46824.	8.0	82

#	Article	IF	CITATIONS
19	From Nanostructural Evolution to Dynamic Interplay ofÂConstituents: Perspectives for Perovskite Solar Cells. Advanced Materials, 2018, 30, e1704208.	21.0	54
20	Organometal Halide Perovskites: From Nanostructural Evolution to Dynamic Interplay ofAConstituents: Perspectives for Perovskite Solar Cells (Adv. Mater. 42/2018). Advanced Materials, 2018, 30, 1870313.	21.0	0
21	Insights on the delithiation/lithiation reactions of Li Mn0.8Fe0.2PO4 mesocrystals in Li+ batteries by in situ techniques. Nano Energy, 2017, 39, 371-379.	16.0	41