Didier Chaussy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6540259/publications.pdf

Version: 2024-02-01

218381 233125 2,293 73 26 45 h-index citations g-index papers 75 75 75 3509 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Cellulose-based Li-ion batteries: a review. Cellulose, 2013, 20, 1523-1545.	2.4	262
2	Microfibrillated cellulose–graphite nanocomposites for highly flexible paper-like Li-ion battery electrodes. Journal of Materials Chemistry, 2010, 20, 7344.	6.7	119
3	Surface functionalization of cellulose fibres and their incorporation in renewable polymeric matrices. Composites Science and Technology, 2008, 68, 3193-3201.	3.8	95
4	A simple route toward next-gen green energy storage concept by nanofibres-based self-supporting electrodes and a solid polymeric design. Carbon, 2016, 107, 811-822.	5.4	80
5	Polymerization of pyrrole on cellulose fibres using a FeCl3 impregnation- pyrrole polymerization sequence. Cellulose, 2006, 13, 725-734.	2.4	79
6	Aqueous processing of cellulose based paper-anodes for flexible Li-ion batteries. Journal of Materials Chemistry, 2012, 22, 3227.	6.7	78
7	Bioelectrodes modified with chitosan for long-term energy supply from the body. Energy and Environmental Science, 2015, 8, 1017-1026.	15.6	68
8	Composites of rigid polyurethane foam and cellulose fiber residue. Journal of Applied Polymer Science, 2010, 117, 3665-3672.	1.3	67
9	Preparation of highly hydrophobic and lipophobic cellulose fibers by a straightforward gas–solid reaction. Journal of Colloid and Interface Science, 2010, 344, 588-595.	5.0	67
10	Flexible cellulose/LiFePO4 paper-cathodes: toward eco-friendly all-paper Li-ion batteries. Cellulose, 2013, 20, 571-582.	2.4	67
11	Highly Conducting Polypyrrole/Cellulose Nanocomposite Films with Enhanced Mechanical Properties. Macromolecular Materials and Engineering, 2010, 295, 934-941.	1.7	65
12	Biocarbons from microfibrillated cellulose/lignosulfonate precursors: A study of electrical conductivity development during slow pyrolysis. Carbon, 2018, 129, 357-366.	5.4	63
13	Photoluminescent Patterned Papers Resulting from Printings of Polymeric Nanoparticles Suspension. International Journal of Polymer Science, 2010, 2010, 1-8.	1.2	60
14	Characterization of three non-product materials from a bleached eucalyptus kraft pulp mill, in view of valorising them as a source of cellulose fibres. Industrial Crops and Products, 2008, 27, 288-295.	2.5	58
15	Use of Microfibrillated Cellulose/Lignosulfonate Blends as Carbon Precursors: Impact of Hydrogel Rheology on 3D Printing. Industrial & Engineering Chemistry Research, 2015, 54, 10575-10582.	1.8	54
16	Highly conductive graphite/carbon fiber/cellulose composite papers. Composites Science and Technology, 2012, 72, 616-623.	3.8	51
17	Freestanding redox buckypaper electrodes from multi-wall carbon nanotubes for bioelectrocatalytic oxygen reduction via mediated electron transfer. Chemical Science, 2014, 5, 2885-2888.	3.7	47
18	Influence of silver paste rheology and screen parameters on the front side metallization of silicon solar cell. Materials Science in Semiconductor Processing, 2014, 27, 790-799.	1.9	41

#	Article	IF	Citations
19	Chitosan improves stability of carbon nanotube biocathodes for glucose biofuel cells. Chemical Communications, 2014, 50, 14535-14538.	2.2	40
20	Aqueous processing of paper separators by filtration dewatering: towards Li-ion paper batteries. Journal of Materials Chemistry A, 2015, 3, 14894-14901.	5.2	40
21	Highly Porous Paper Loading with Microfibrillated Cellulose by Spray Coating on Wet Substrates. Industrial & Description of the Substrates of the Microfibrillated Cellulose by Spray Coating on Wet Substrates.	1.8	39
22	A fibrous cellulose paste formulation to manufacture structural parts using 3D printing by extrusion. Carbohydrate Polymers, 2019, 212, 119-128.	5.1	35
23	Photoluminescent Paper Based on Poly(fluoreneâ€ <i>co</i> à6€fluorenone) Particles Adsorption on Modified Cellulose Fibers. Advanced Materials, 2007, 19, 3291-3294.	11.1	34
24	Microfibrillated Cellulose Based Ink for Eco-Sustainable Screen Printed Flexible Electrodes in Lithium Ion Batteries. Journal of Materials Science and Technology, 2016, 32, 566-572.	5.6	32
25	Pilot-scale elaboration of graphite/microfibrillated cellulose anodes for Li-ion batteries by spray deposition on a forming paper sheet. Chemical Engineering Journal, 2014, 243, 372-379.	6.6	29
26	Carbon nanotube-based flexible biocathode for enzymatic biofuel cells by spray coating. Journal of Power Sources, 2018, 408, 1-6.	4.0	29
27	Screen-Printed Polyaniline-Based Electrodes for the Real-Time Monitoring of Loop-Mediated Isothermal Amplification Reactions. Analytical Chemistry, 2017, 89, 10124-10128.	3.2	26
28	Fabrication of 3D conductive circuits: print quality evaluation of a direct ink writing process. RSC Advances, 2018, 8, 26036-26046.	1.7	25
29	Cellulose/graphite/carbon fibres composite electrodes for Li-ion batteries. Composites Science and Technology, 2013, 87, 232-239.	3.8	24
30	Polypyrrole (PPy) chemical synthesis with xylan in aqueous medium and production of highly conducting PPy/nanofibrillated cellulose films and coatings. Cellulose, 2011, 18, 1455-1467.	2.4	23
31	Rapid nanopaper production by spray deposition of concentrated microfibrillated cellulose slurries. Industrial Crops and Products, 2015, 72, 200-205.	2.5	23
32	Adsorption of cationic photoluminescent nanoparticles on softwood cellulose fibres: Effects of particles stabilization and fibres' beating. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 334, 80-86.	2.3	22
33	Thermal characterization and kinetic analysis of microfibrillated cellulose/lignosulfonate blends. Journal of Analytical and Applied Pyrolysis, 2017, 124, 25-34.	2.6	22
34	Carboxymethylcellulose: A conductivity enhancer and film-forming agent for processable polypyrrole from aqueous medium. Synthetic Metals, 2011, 161, 397-403.	2.1	21
35	Use of Cellulose Nanofibers as an Electrode Binder for Lithium Ion Battery Screen Printing on a Paper Separator. Nanomaterials, 2018, 8, 982.	1.9	21
36	Capillary Flow Resistors: Local and Global Resistors. Langmuir, 2016, 32, 915-921.	1.6	20

#	Article	IF	CITATIONS
37	Use of lignocellulosic materials and 3D printing for the development of structured monolithic carbon materials. Composites Part B: Engineering, 2018, 149, 206-215.	5.9	20
38	Surfactant (TTAB) Role in the Preparation of 2,7-Poly(9,9-dialkylfluorene- <i>co</i> hi>-fluorenone) Nanoparticles by Miniemulsion. Langmuir, 2009, 25, 6745-6752.	1.6	19
39	Use of paper-making techniques for the production of Li-ion paper-batteries. Nordic Pulp and Paper Research Journal, 2012, 27, 472-475.	0.3	19
40	Characterization of Commercial Polyvinylbutyrals. International Journal of Polymer Analysis and Characterization, 2013, 18, 346-357.	0.9	19
41	Photochromic Ag:TiO ₂ thin films on PET substrate. RSC Advances, 2014, 4, 61305-61312.	1.7	19
42	Low-cost embossed-paper micro-channels for spontaneous capillary flow. Sensors and Actuators B: Chemical, 2017, 248, 395-401.	4.0	18
43	Microfibrillated cellulose-SiO2 composite nanopapers produced by spray deposition. Journal of Materials Science, 2015, 50, 4095-4103.	1.7	17
44	Spontaneous capillary flows in piecewise varying cross section microchannels. Sensors and Actuators B: Chemical, 2016, 223, 868-877.	4.0	17
45	Adsorption of poly(3-octylthiophene) nanoparticles on cellulose fibres: Effect of dispersion stability and fibre pre-treatment with carboxymethyl cellulose. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 349, 83-89.	2.3	16
46	Photoluminescence of 2,7-Poly(9,9-dialkylfluorene- <i>co</i> fluorenone) Nanoparticles: Effect of Particle Size and Inert Polymer Addition. Langmuir, 2010, 26, 14437-14442.	1.6	14
47	Catalyst Layers for PEMFC Manufactured by Flexography Printing Process: Performances and Structure. Fuel Cells, 2012, 12, 199-211.	1.5	14
48	Rheological Behavior of Cellulose Fiber Suspensions: Application to Paper-Making Processing. Industrial & Engineering Chemistry Research, 2011, 50, 3524-3533.	1.8	13
49	Use of microfibrillated cellulose and dendritic copper for the elaboration of conductive films from water- and ethanol-based dispersions. Journal of Materials Science, 2013, 48, 6911-6920.	1.7	13
50	Laccase wiring on free-standing electrospun carbon nanofibres using a mediator plug. Chemical Communications, 2015, 51, 14574-14577.	2.2	13
51	Spontaneous capillary flow in curved, open microchannels. Microfluidics and Nanofluidics, 2016, 20, 1.	1.0	13
52	Industrial pressure sensitive adhesives suitable for physicochemical microencapsulation. International Journal of Adhesion and Adhesives, 2011, 31, 629-633.	1.4	11
53	Encapsulation of a pressure sensitive adhesive by spray-cooling: Optimum formulation and processing conditions. Advanced Powder Technology, 2014, 25, 292-300.	2.0	11
54	Laccase-based biocathodes: Comparison of chitosan and Nafion. Analytica Chimica Acta, 2016, 937, 43-52.	2.6	11

#	Article	IF	CITATIONS
55	Silicone Linerâ€Free Pressureâ€Sensitive Adhesive Labels. Macromolecular Materials and Engineering, 2008, 293, 167-172.	1.7	10
56	Characterization of oil-proof papers containing new-type of fluorochemicals Part 1: Surface properties and printability. Applied Surface Science, 2013, 277, 57-66.	3.1	10
57	Flexible photochromic Ag:TiO ₂ thin films fabricated by ink-jet and flexography printing processes. RSC Advances, 2015, 5, 84560-84564.	1.7	9
58	Study of the high throughput flexographic process for silicon solar cell metallisation. Progress in Photovoltaics: Research and Applications, 2016, 24, 240-252.	4.4	9
59	Surface characterization of industrial flexible polyvinyl(chloride) films. Applied Surface Science, 2014, 296, 147-153.	3.1	8
60	On the halt of spontaneous capillary flows in diverging open channels. Medical Engineering and Physics, 2017, 48, 75-80.	0.8	8
61	Silver ink experiments for silicon solar cell metallization by flexographic process. , 2012, , .		7
62	Emitter Requirements for Nickel Contacts on Silicon Solar Cells-A Simulation Study. Energy Procedia, 2013, 38, 321-328.	1.8	6
63	Viscoelastic capillary flow: the case of whole blood. AIMS Biophysics, 2016, 3, 340-357.	0.3	6
64	Evaluating the Effectiveness of Using Flexography Printing for Manufacturing Catalystâ€Coated Membranes for Fuel Cells. Fuel Cells, 2014, 14, 614-625.	1.5	4
65	Encapsulation of a pressure-sensitive adhesive by spray-drying: microparticles preparation and evaluation of their crushing strength. Journal of Microencapsulation, 2012, 29, 185-193.	1.2	3
66	Influence of the Schottky barrier height on the silicon solar cells. , 2013, , .		2
67	Combining design of experiments and power loss computations to study the screen printing process., 2013,,.		2
68	Photosensitive ink formulation and inkjet printing on flexible PET substrate. Journal of Coatings Technology Research, 2019, 16, 113-123.	1.2	2
69	Use of a 6-axis robot and ink piezo-jetting to print conductive paths on 3D objects. Printed circuit geometry, and conductivity predictive model. CIRP Journal of Manufacturing Science and Technology, 2021, 35, 855-863.	2.3	1
70	VALORISATION OF BY PRODUCTS FROM BLEACHED EUCALYPTUS KRAFT PULP MILL. AIP Conference Proceedings, 2008, , .	0.3	0
71	SILICONE LINER-FREE PRESSURE SENSITIVE ADHESIVE LABELS. AIP Conference Proceedings, 2008, , .	0.3	0
72	Simulations Based on the Cooptimization Procedure for Plated Contacts With a NiSi Interface. IEEE Journal of Photovoltaics, 2015, 5, 826-831.	1.5	0

-	#	Article	IF	CITATIONS
	73	Print Marble Assessment on Plasticized Polyvinyl(chloride) Films. Journal of Imaging Science and Technology, 2012, 56, 1-7.	0.3	0