## Karteek K Bejagam

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6540081/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                   | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Biomimetic temporal self-assembly via fuel-driven controlled supramolecular polymerization. Nature<br>Communications, 2018, 9, 1295.                                                                                      | 12.8 | 148       |
| 2  | Dipole-Moment-Driven Cooperative Supramolecular Polymerization. Journal of the American Chemical Society, 2015, 137, 3924-3932.                                                                                           | 13.7 | 115       |
| 3  | Solvent Clathrate Driven Dynamic Stereomutation of a Supramolecular Polymer with Molecular<br>Pockets. Journal of the American Chemical Society, 2017, 139, 13867-13875.                                                  | 13.7 | 86        |
| 4  | Supramolecular Polymerization of Benzene-1,3,5-tricarboxamide: A Molecular Dynamics Simulation Study. Journal of Physical Chemistry B, 2014, 118, 5218-5228.                                                              | 2.6  | 61        |
| 5  | Autoresolution of Segregated and Mixed pâ€n Stacks by Stereoselective Supramolecular Polymerization<br>in Solution. Angewandte Chemie - International Edition, 2015, 54, 13053-13057.                                     | 13.8 | 61        |
| 6  | Machine-Learned Coarse-Grained Models. Journal of Physical Chemistry Letters, 2018, 9, 4667-4672.                                                                                                                         | 4.6  | 48        |
| 7  | Dissolution of Cellulose in Room Temperature Ionic Liquids: Anion Dependence. Journal of Physical<br>Chemistry B, 2015, 119, 1654-1659.                                                                                   | 2.6  | 44        |
| 8  | PSO-Assisted Development of New Transferable Coarse-Grained Water Models. Journal of Physical Chemistry B, 2018, 122, 1958-1971.                                                                                          | 2.6  | 39        |
| 9  | Supramolecular Polymerization: A Coarse Grained Molecular Dynamics Study. Journal of Physical Chemistry B, 2015, 119, 5738-5746.                                                                                          | 2.6  | 38        |
| 10 | Machine-Learning Enabled New Insights into the Coil-to-Globule Transition of Thermosensitive<br>Polymers Using a Coarse-Grained Model. Journal of Physical Chemistry Letters, 2018, 9, 6480-6488.                         | 4.6  | 34        |
| 11 | Host–Guest [2+2] Cycloaddition Reaction: Postsynthetic Modulation of CO <sub>2</sub> Selectivity<br>and Magnetic Properties in a Bimodal Metal–Organic Framework. Chemistry - A European Journal, 2016,<br>22, 7792-7799. | 3.3  | 30        |
| 12 | Nanoparticle activated and directed assembly of graphene into a nanoscroll. Carbon, 2018, 134, 43-52.                                                                                                                     | 10.3 | 29        |
| 13 | Development of New Transferable Coarse-Grained Models of Hydrocarbons. Journal of Physical Chemistry B, 2018, 122, 7143-7153.                                                                                             | 2.6  | 28        |
| 14 | Unraveling the Conformations of Backbone and Side Chains in Thermosensitive Bottlebrush Polymers.<br>Macromolecules, 2019, 52, 9398-9408.                                                                                 | 4.8  | 28        |
| 15 | Machine-Learning Based Stacked Ensemble Model for Accurate Analysis of Molecular Dynamics<br>Simulations. Journal of Physical Chemistry A, 2019, 123, 5190-5198.                                                          | 2.5  | 26        |
| 16 | External electric field reverses helical handedness of a supramolecular columnar stack. Chemical<br>Communications, 2015, 51, 16049-16052.                                                                                | 4.1  | 22        |
| 17 | Development of an Accurate Coarse-Grained Model of Poly(acrylic acid) in Explicit Solvents.<br>Macromolecules, 2019, 52, 4875-4887.                                                                                       | 4.8  | 21        |
| 18 | Solvation dynamics of <i>N</i> -substituted acrylamide polymers and the importance for phase transition behavior. Soft Matter, 2020, 16, 1582-1593.                                                                       | 2.7  | 20        |

Karteek K Bejagam

| #  | Article                                                                                                                                                                                                                          | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Molecular dynamics simulations for glass transition temperature predictions of<br>polyhydroxyalkanoate biopolymers. Physical Chemistry Chemical Physics, 2020, 22, 17880-17889.                                                  | 2.8  | 19        |
| 20 | Development of nonâ€bonded interaction parameters between graphene and water using particle swarm optimization. Journal of Computational Chemistry, 2018, 39, 721-734.                                                           | 3.3  | 18        |
| 21 | Development of transferable coarse-grained models of amino acids. Molecular Systems Design and Engineering, 2020, 5, 675-685.                                                                                                    | 3.4  | 16        |
| 22 | Machine Learning for Melting Temperature Predictions and Design in Polyhydroxyalkanoate-Based<br>Biopolymers. Journal of Physical Chemistry B, 2022, 126, 934-945.                                                               | 2.6  | 15        |
| 23 | Development of Transferable Nonbonded Interactions between Coarse-Grained Hydrocarbon and Water Models. Journal of Physical Chemistry B, 2019, 123, 909-921.                                                                     | 2.6  | 12        |
| 24 | Understanding the self-assembly of amino ester-based benzene-1,3,5-tricarboxamides using molecular dynamics simulations. Physical Chemistry Chemical Physics, 2017, 19, 258-266.                                                 | 2.8  | 11        |
| 25 | Composition and Configuration Dependence of Glass-Transition Temperature in Binary Copolymers and Blends of Polyhydroxyalkanoate Biopolymers. Macromolecules, 2021, 54, 5618-5628.                                               | 4.8  | 11        |
| 26 | Supramolecular Polymerization of<br><i>N</i> , <i>N</i> ′, <i>N</i> ″, <i>N</i> ‴- <i>tetra</i> -(Tetradecyl)-1,3,6,8-pyrenetetracarboxamide: A<br>Computational Study. Journal of Physical Chemistry B, 2017, 121, 11492-11503. | 2.6  | 10        |
| 27 | Development of non-bonded interaction parameters between hexagonal boron-nitride and water.<br>Computational Materials Science, 2019, 161, 339-345.                                                                              | 3.0  | 10        |
| 28 | Durable and highly selective ion transport of a sulfonated Diels Alder Poly(phenylene) for vanadium redox flow batteries. Journal of Power Sources, 2022, 520, 230805.                                                           | 7.8  | 9         |
| 29 | Predicting the Mechanical Response of Polyhydroxyalkanoate Biopolymers Using Molecular Dynamics<br>Simulations. Polymers, 2022, 14, 345.                                                                                         | 4.5  | 7         |
| 30 | Dehydration of polymer chains initiates graphene folding in water. Carbon, 2021, 180, 244-253.                                                                                                                                   | 10.3 | 5         |