
Jungmin Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6540053/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Determination of Total Monomeric Anthocyanin Pigment Content of Fruit Juices, Beverages, Natural Colorants, and Wines by the pH Differential Method: Collaborative Study. Journal of AOAC INTERNATIONAL, 2005, 88, 1269-1278.	0.7	1,908
2	Tracking color and pigment changes in anthocyanin products. Trends in Food Science and Technology, 2005, 16, 423-428.	7.8	621
3	Determination of total monomeric anthocyanin pigment content of fruit juices, beverages, natural colorants, and wines by the pH differential method: collaborative study. Journal of AOAC INTERNATIONAL, 2005, 88, 1269-78.	0.7	387
4	Correlation of two anthocyanin quantification methods: HPLC and spectrophotometric methods. Food Chemistry, 2008, 110, 782-786.	4.2	227
5	Chicoric acid found in basil (Ocimum basilicum L.) leaves. Food Chemistry, 2009, 115, 650-656.	4.2	219
6	Anthocyanins and other polyphenolics in American elderberry (<i>Sambucus canadensis</i>) and European elderberry (<i>S. nigra</i>) cultivars. Journal of the Science of Food and Agriculture, 2007, 87, 2665-2675.	1.7	203
7	Impact of Juice Processing on Blueberry Anthocyanins and Polyphenolics: Comparison of Two Pretreatments. Journal of Food Science, 2002, 67, 1660-1667.	1.5	178
8	Rubus fruit phenolic research: The good, the bad, and the confusing. Food Chemistry, 2012, 130, 785-796.	4.2	129
9	Chicoric acid: chemistry, distribution, and production. Frontiers in Chemistry, 2013, 1, 40.	1.8	112
10	Oregon â€~Pinot noir' grape anthocyanin enhancement by early leaf removal. Food Chemistry, 2013, 139, 893-901.	4.2	69
11	Salinity from NaCl changes the nutrient and polyphenolic composition of basil leaves. Industrial Crops and Products, 2019, 127, 119-128.	2.5	60
12	Caffeic acid derivatives in dried Lamiaceae and Echinacea purpurea products. Journal of Functional Foods, 2010, 2, 158-162.	1.6	58
13	Chicoric acid levels in commercial basil (Ocimum basilicum) and Echinacea purpurea products. Journal of Functional Foods, 2010, 2, 77-84.	1.6	56
14	Phenolic Composition of Basil Plants Is Differentially Altered by Plant Nutrient Status and Inoculation with Mycorrhizal Fungi. Hortscience: A Publication of the American Society for Hortcultural Science, 2012, 47, 660-671.	0.5	56
15	Lingonberry (Vaccinium vitis-idaea L.) grown in the Pacific Northwest of North America: Anthocyanin and free amino acid composition. Journal of Functional Foods, 2012, 4, 213-218.	1.6	55
16	Comparison of Anthocyanin Pigment and Other Phenolic Compounds ofVaccinium membranaceumandVaccinium ovatumNative to the Pacific Northwest of North America. Journal of Agricultural and Food Chemistry, 2004, 52, 7039-7044.	2.4	54
17	Influence of grapevine leafroll associated viruses (GLRaV-2 and -3) on the fruit composition of Oregon Vitis vinifera L. cv. Pinot noir: Phenolics. Food Chemistry, 2009, 112, 889-896.	4.2	50
18	Determination of proanthocyanidin A2 content in phenolic polymer isolates by reversed-phase high-performance liquid chromatography. Journal of Chromatography A, 2009, 1216, 1403-1409.	1.8	50

Jungmin Lee

#	Article	IF	CITATIONS
19	Free Amino Acid and Cysteine Sulfoxide Composition of 11 Garlic (Allium sativumL.) Cultivars by Gas Chromatography with Flame Ionization and Mass Selective Detection. Journal of Agricultural and Food Chemistry, 2005, 53, 9100-9104.	2.4	45
20	N, P, and K Supply to Pinot noir Grapevines: Impact on Vine Nutrient Status, Growth, Physiology, and Yield. American Journal of Enology and Viticulture, 2013, 64, 26-38.	0.9	45
21	Variation in anthocyanins and total phenolics of black raspberry populations. Journal of Functional Foods, 2010, 2, 292-297.	1.6	43
22	Free amino acid profiles from â€~Pinot noir' grapes are influenced by vine N-status and sample preparation method. Food Chemistry, 2010, 119, 484-489.	4.2	42
23	Inheritance of Phenological, Vegetative, and Fruit Chemistry Traits in Black Raspberry. Journal of the American Society for Horticultural Science, 2008, 133, 408-417.	0.5	39
24	A genetic linkage map of black raspberry (Rubus occidentalis) and the mapping of Ag 4 conferring resistance to the aphid Amphorophora agathonica. Theoretical and Applied Genetics, 2015, 128, 1631-1646.	1.8	35
25	Influence of grapevine leafroll associated viruses (GLRaV-2 and -3) on the fruit composition of Oregon Vitis vinifera L. cv. Pinot noir: Free amino acids, sugars, and organic acids. Food Chemistry, 2009, 117, 99-105.	4.2	34
26	Characterization of a novel anthocyanin profile in wild black raspberry mutants: An opportunity for studying the genetic control of pigment and color. Journal of Functional Foods, 2011, 3, 207-214.	1.6	33
27	Effect of Selenium Fertilizer on Free Amino Acid Composition of Broccoli (Brassica oleraceaCv.) Tj ETQq1 1 0.784 Journal of Agricultural and Food Chemistry, 2005, 53, 9105-9111.	314 rgBT 2.4	/Overlock 10 32
28	Anthocyanin analyses of <i>Vaccinium</i> fruit dietary supplements. Food Science and Nutrition, 2016, 4, 742-752.	1.5	32
29	Antioxidant capacity and stilbene contents of wines produced in the Snake River Valley of Idaho. Food Chemistry, 2007, 105, 195-203.	4.2	31
30	Sorbitol, Rubus fruit, and misconception. Food Chemistry, 2015, 166, 616-622.	4.2	31
31	Salt Exclusion and Mycorrhizal Symbiosis Increase Tolerance to NaCl and CaCl2 Salinity in â€~Siam Queen' Basil. Hortscience: A Publication of the American Society for Hortcultural Science, 2017, 52, 278-287.	0.5	30
32	Proanthocyanidin A2 purification and quantification of American cranberry (Vaccinium macrocarpon) Tj ETQq0 0	0 rgBT /O	verlgck 10 Tf
33	N, P, and K Supply to Pinot noir Grapevines: Impact on Berry Phenolics and Free Amino Acids. American Journal of Enology and Viticulture, 2014, 65, 43-49.	0.9	28
34	Anthocyanin Pigment and Total Phenolic Content of Three Vaccinium Species Native to the Pacific Northwest of North America. Hortscience: A Publication of the American Society for Hortcultural Science, 2004, 39, 959-964.	0.5	28
35	Effect of early seed removal during fermentation on proanthocyanidin extraction in red wine: A commercial production example. Food Chemistry, 2008, 107, 1270-1273.	4.2	27
36	Metabolism of Nonesterified and Esterified Hydroxycinnamic Acids in Red Wines by <i>Brettanomyces bruxellensis</i> . Journal of Agricultural and Food Chemistry, 2013, 61, 11610-11617.	2.4	27

JUNGMIN LEE

#	Article	IF	CITATIONS
37	A comparison of fruit characteristics among diverse elderberry genotypes grown in Missouri and Oregon. Journal of Berry Research, 2013, 3, 159-168.	0.7	25
38	â€~Cabernet Sauvignon' grape anthocyanin increased by soil conservation practices. Scientia Horticulturae, 2013, 159, 128-133.	1.7	24
39	Anthocyanin fingerprinting of true bokbunja (Rubus coreanus Miq.) fruit. Journal of Functional Foods, 2013, 5, 1985-1990.	1.6	24
40	A Novel Genetic Variant of <i>Grapevine leafroll-associated virus-3</i> (GLRaV-3) from Idaho Grapevines. Plant Disease, 2019, 103, 509-518.	0.7	24
41	Degradation kinetics of grape skin and seed proanthocyanidins in a model wine system. Food Chemistry, 2010, 123, 51-56.	4.2	23
42	Rootstock and vineyard floor management influence on â€~Cabernet Sauvignon' grape yeast assimilable nitrogen (YAN). Food Chemistry, 2011, 127, 926-933.	4.2	23
43	REMOVAL OF <i>BRETTANOMYCES BRUXELLENSIS</i> FROM RED WINE USING MEMBRANE FILTRATION. Journal of Food Processing and Preservation, 2013, 37, 799-805.	0.9	23
44	Further research on the biological activities and the safety of raspberry ketone is needed. NFS Journal, 2016, 2, 15-18.	1.9	21
45	Influence of extraction methodology on grape composition values. Food Chemistry, 2011, 126, 295-300.	4.2	20
46	Irrigation of an established vineyard with winery cleaning agent solution (simulated winery) Tj ETQq0 0 0 rgBT /0 123, 93-102.	Dverlock 1 2.4	0 Tf 50 387 T 20
47	Vineyard Floor Management Influences â€~Pinot noir' Vine Growth and Productivity More than Cluster Thinning. Hortscience: A Publication of the American Society for Hortcultural Science, 2016, 51, 1233-1244.	0.5	20
48	Establishing a case for improved food phenolic analysis. Food Science and Nutrition, 2014, 2, 1-8.	1.5	17
49	Influence of Growth Regulators on Plant Growth, Yield, and Skin Color of Specialty Potatoes. American Journal of Potato Research, 2013, 90, 271-283.	0.5	16
50	Vineyard Floor Management and Cluster Thinning Inconsistently Affect â€~Pinot noir' Crop Load, Berry Composition, and Wine Quality. Hortscience: A Publication of the American Society for Hortcultural Science, 2018, 53, 318-328.	0.5	16
51	Mistaken Identity: Clarification of Rubus coreanus Miquel (Bokbunja). Molecules, 2014, 19, 10524-10533.	1.7	15
52	Rosaceae products: Anthocyanin quality and comparisons between dietary supplements and foods. NFS Journal, 2016, 4, 1-8.	1.9	14
53	Marketplace Analysis Demonstrates Quality Control Standards Needed for Black Raspberry Dietary Supplements. Plant Foods for Human Nutrition, 2014, 69, 161-167.	1.4	13
54	Light exclusion influence on grape anthocyanin. Heliyon, 2017, 3, e00243.	1.4	13

JUNGMIN LEE

#	Article	IF	CITATIONS
55	Fungal and bacterial communities of â€~Pinot noir' must: effects of vintage, growing region, climate, and basic must chemistry. PeerJ, 2021, 9, e10836.	0.9	12
56	Anthocyanins of açai products in the United States. NFS Journal, 2019, 14-15, 14-21.	1.9	10
57	First Report of Grapevine Red Blotch Virus in Idaho Grapevines. Plant Disease, 2019, 103, 2704-2704.	0.7	9
58	Characterization of aphid resistance loci in black raspberry (Rubus occidentalis L.). Molecular Breeding, 2018, 38, 1.	1.0	8
59	Influence of Grapevine red blotch virus (GRBV) on Idaho â€~Syrah' grape composition. Scientia Horticulturae, 2021, 282, 110055.	1.7	8
60	â€~Columbia Star' Thornless Trailing Blackberry. Hortscience: A Publication of the American Society for Hortcultural Science, 2014, 49, 1108-1112.	0.5	8
61	COMPARISON OF TWO METHODS FOR ANTHOCYANIN QUANTIFICATION. Acta Horticulturae, 2009, , 831-834.	0.1	7
62	ANTHOCYANIN CONTENT OF WILD BLACK RASPBERRY GERMPLASM. Acta Horticulturae, 2012, , 43-47.	0.1	7
63	Salinity sensitivity and mycorrhizal responsiveness of polyphenolics in â€~Siam Queen' basil grown in soilless substrate. Scientia Horticulturae, 2020, 269, 109394.	1.7	6
64	GENETIC AND DEVELOPING GENOMIC RESOURCES IN BLACK RASPBERRY. Acta Horticulturae, 2014, , 19-24.	0.1	5
65	Analysis of grape polyamines from Grapevine leafroll associated viruses (GLRaV-2 and -3) infected vines. Food Chemistry, 2010, 122, 1222-1225.	4.2	4
66	AOAC SMPR 2015.009: Estimation of Total Phenolic Content Using the Folin-C Assay. Journal of AOAC INTERNATIONAL, 2015, 98, 1109-1110.	0.7	4
67	Analysis of bokbunja products show they contain Rubus occidentalis L. fruit. Journal of Functional Foods, 2015, 12, 144-149.	1.6	4
68	The Association between Pancreatic Steatosis and Diabetic Retinopathy in Type 2 Diabetes Mellitus Patients. Diabetes and Metabolism Journal, 2018, 42, 425.	1.8	4
69	First Report of Grapevine rupestris vein feathering virus in Wine Grapes in Idaho. Plant Disease, 2021, 105, 3309.	0.7	4
70	â€~Eclipse' Thornless Semi-erect Blackberry. Hortscience: A Publication of the American Society for Hortcultural Science, 2020, 55, 749-754.	0.5	4
71	â€~Galaxy' Thornless Semierect Blackberry. Hortscience: A Publication of the American Society for Hortcultural Science, 2020, 55, 967-971.	0.5	4
72	AOAC SMPR 2014.007: Authentication of Selected <i>Vaccinium</i> species (Anthocyanins) in Dietary Ingredients and Dietary Supplements. Journal of AOAC INTERNATIONAL, 2015, 98, 1052-1054.	0.7	3

Jungmin Lee

#	Article	IF	CITATIONS
73	â€~Charm' Strawberry. Hortscience: A Publication of the American Society for Hortcultural Science, 2013, 48, 1184-1188.	0.5	3
74	â€~Baby Blues' Highbush Blueberry. Hortscience: A Publication of the American Society for Hortcultural Science, 2016, 51, 761-765.	0.5	3
75	â€~Columbia Giant' Thornless Trailing Blackberry. Hortscience: A Publication of the American Society for Hortcultural Science, 2018, 53, 251-255.	0.5	2
76	Effects of Post-véraison Water Deficit on â€~Pinot noir' Yield and Nutrient Status in Leaves, Clusters, and Musts. Hortscience: A Publication of the American Society for Hortcultural Science, 2014, 49, 1335-1340.	0.5	2
77	†Twilight' Thornless Semi-erect Blackberry. Hortscience: A Publication of the American Society for Hortcultural Science, 2020, 55, 1148-1152.	0.5	2
78	†Kokanee' Primocane-fruiting Red Raspberry. Hortscience: A Publication of the American Society for Hortcultural Science, 2018, 53, 380-383.	0.5	1
79	†Hall's Beauty' Thornless Trailing Blackberry. Hortscience: A Publication of the American Society for Hortcultural Science, 2019, 54, 371-376.	0.5	1
80	ANTHOCYANIN RICH BLACK RASPBERRIES CAN BE MADE EVEN BETTER. Acta Horticulturae, 2014, , 127-133.	0.1	1
81	†Marys Peak' Strawberry. Hortscience: A Publication of the American Society for Hortcultural Science, 2018, 53, 395-400.	0.5	0
82	AMERICAN CRANBERRY PRODUCTS: PROANTHOCYANIDIN PURIFICATION AND CONCENTRATIONS. Acta Horticulturae, 2014, , 363-368.	0.1	0