Alejandro Cabezas-Cruz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6539945/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Anti-tick microbiota vaccines: how can this actually work?. Biologia (Poland), 2022, 77, 1555-1562.	0.8	19
2	Fatal cases of bovine anaplasmosis in a herd infected with different Anaplasma marginale genotypes in southern Spain. Ticks and Tick-borne Diseases, 2022, 13, 101864.	1.1	7
3	Thermostable Keystone Bacteria Maintain the Functional Diversity of the Ixodes scapularis Microbiome Under Heat Stress. Microbial Ecology, 2022, 84, 1224-1235.	1.4	7
4	Vector microbiota manipulation by host antibodies: the forgotten strategy to develop transmission-blocking vaccines. Parasites and Vectors, 2022, 15, 4.	1.0	22
5	Use of Defensins to Develop Eco-Friendly Alternatives to Synthetic Fungicides to Control Phytopathogenic Fungi and Their Mycotoxins. Journal of Fungi (Basel, Switzerland), 2022, 8, 229.	1.5	7
6	Exploring the Ecological Implications of Microbiota Diversity in Birds: Natural Barriers Against Avian Malaria. Frontiers in Immunology, 2022, 13, 807682.	2.2	6
7	The Symbiotic Continuum Within Ticks: Opportunities for Disease Control. Frontiers in Microbiology, 2022, 13, 854803.	1.5	18
8	Anti-Microbiota Vaccine Reduces Avian Malaria Infection Within Mosquito Vectors. Frontiers in Immunology, 2022, 13, 841835.	2.2	18
9	Unexpected TBEV Seropositivity in Serbian Patients Who Recovered from Viral Meningitis and Encephalitis. Pathogens, 2022, 11, 371.	1.2	7
10	Demographic and Clinical Factors Associated with Reactivity of Anti-SARS-CoV-2 Antibodies in Serbian Convalescent Plasma Donors. International Journal of Environmental Research and Public Health, 2022, 19, 42.	1.2	7
11	Functional characterization of α-Gal producing lactic acid bacteria with potential probiotic properties. Scientific Reports, 2022, 12, 7484.	1.6	8
12	Assessment of the Safety and Efficacy of an Oral Probiotic-Based Vaccine Against Aspergillus Infection in Captive-Bred Humboldt Penguins (Spheniscus humboldti). Frontiers in Immunology, 2022, 13, .	2.2	5
13	The antibody response to the glycan αâ€Gal correlates with COVIDâ€19 disease symptoms. Journal of Medical Virology, 2021, 93, 2065-2075.	2.5	25
14	Humans infested with Ixodes ricinus are exposed to a diverse array of tick-borne pathogens in Serbia. Ticks and Tick-borne Diseases, 2021, 12, 101609.	1.1	25
15	Immunity to glycan α-Gal and possibilities for the control of COVID-19. Immunotherapy, 2021, 13, 185-188.	1.0	15
16	Enlisting the Ixodes scapularis Embryonic ISE6 Cell Line to Investigate the Neuronal Basis of Tick—Pathogen Interactions. Pathogens, 2021, 10, 70.	1.2	11
17	First Evidence of Ehrlichia minasensis Infection in Horses from Brazil. Pathogens, 2021, 10, 265.	1.2	8
18	Shared Odds of Borrelia and Rabies Virus Exposure in Serbia. Pathogens, 2021, 10, 399.	1.2	1

#	Article	IF	CITATIONS
19	Tick-Borne Encephalitis Virus Seropositivity among Tick Infested Individuals in Serbia. Pathogens, 2021, 10, 301.	1.2	11
20	Functional Food for the Stimulation of the Immune System Against Malaria. Probiotics and Antimicrobial Proteins, 2021, 13, 1254-1266.	1.9	9
21	Tick defensin Î ³ -core reduces Fusarium graminearum growth and abrogates mycotoxins production with high efficiency. Scientific Reports, 2021, 11, 7962.	1.6	8
22	Tick Importin-α Is Implicated in the Interactome and Regulome of the Cofactor Subolesin. Pathogens, 2021, 10, 457.	1.2	5
23	Citizen science initiative points at childhood BCG vaccination as a risk factor for COVIDâ€19. Transboundary and Emerging Diseases, 2021, 68, 3114-3119.	1.3	8
24	Tick–human interactions: from allergic klendusity to the α-Gal syndrome. Biochemical Journal, 2021, 478, 1783-1794.	1.7	16
25	Characterization of the anti-α-Gal antibody profile in association with Guillain-Barré syndrome, implications for tick-related allergic reactions. Ticks and Tick-borne Diseases, 2021, 12, 101651.	1.1	7
26	Probiotic Bacteria with High Alpha-Gal Content Protect Zebrafish against Mycobacteriosis. Pharmaceuticals, 2021, 14, 635.	1.7	14
27	Serological evidence of Ehrlichia minasensis infection in Brazilian dogs. Acta Tropica, 2021, 219, 105931.	0.9	6
28	Hexapod Assassins' Potion: Venom Composition and Bioactivity from the Eurasian Assassin Bug Rhynocoris iracundus. Biomedicines, 2021, 9, 819.	1.4	5
29	Anti-Microbiota Vaccines Modulate the Tick Microbiome in a Taxon-Specific Manner. Frontiers in Immunology, 2021, 12, 704621.	2.2	38
30	Potent Activity of Hybrid Arthropod Antimicrobial Peptides Linked by Glycine Spacers. International Journal of Molecular Sciences, 2021, 22, 8919.	1.8	5
31	Ecological and evolutionary perspectives on tick-borne pathogen co-infections. Current Research in Parasitology and Vector-borne Diseases, 2021, 1, 100049.	0.7	6
32	A One Health approach to study the circulation of tick-borne pathogens: A preliminary study. One Health, 2021, 13, 100270.	1.5	19
33	Current debates and advances in tick microbiome research. Current Research in Parasitology and Vector-borne Diseases, 2021, 1, 100036.	0.7	43
34	Ticks and Tick-Borne Diseases in Central America and the Caribbean: A One Health Perspective. Pathogens, 2021, 10, 1273.	1.2	19
35	Can the impact of climate change on the tick microbiome bring a new epidemiological landscape to tick-borne diseases?. , 2021, , 46-49.		1
36	Clinical Aspects and Detection of Emerging Rickettsial Pathogens: A "One Health―Approach Study in Serbia, 2020. Frontiers in Microbiology, 2021, 12, 797399.	1.5	13

#	Article	IF	CITATIONS
37	The α-Gal Syndrome and Potential Mechanisms. Frontiers in Allergy, 2021, 2, 783279.	1.2	22
38	Characterization of tick salivary gland and saliva alphagalactome reveals candidate alpha-gal syndrome disease biomarkers. Expert Review of Proteomics, 2021, 18, 1099-1116.	1.3	12
39	Bovine ticks harbour a diverse array of microorganisms in Pakistan. Parasites and Vectors, 2020, 13, 1.	1.0	141
40	Development and application of a multiplex TaqMan® real-time qPCR assay for the simultaneous detection of Anaplasma marginale and Theileria annulata and molecular characterization of Anaplasma marginale from cattle in Western Cuba Ticks and Tick-borne Diseases, 2020, 11, 101356.	1.1	5
41	α-Gal-Based Vaccines: Advances, Opportunities, and Perspectives. Trends in Parasitology, 2020, 36, 992-1001.	1.5	25
42	Alpha-gal syndrome: challenges to understanding sensitization and clinical reactions to alpha-gal. Expert Review of Molecular Diagnostics, 2020, 20, 905-911.	1.5	22
43	Systematic Review of Ticks and Tick-Borne Pathogens of Small Ruminants in Pakistan. Pathogens, 2020, 9, 937.	1.2	14
44	Behind Taxonomic Variability: The Functional Redundancy in the Tick Microbiome. Microorganisms, 2020, 8, 1829.	1.6	25
45	Anti-Tick Microbiota Vaccine Impacts Ixodes ricinus Performance during Feeding. Vaccines, 2020, 8, 702.	2.1	53
46	COVID-19 in the Developing World: Is the Immune Response to α-Gal an Overlooked Factor Mitigating the Severity of Infection?. ACS Infectious Diseases, 2020, 6, 3104-3108.	1.8	8
47	Cryptosporidium parvum Infection Depletes Butyrate Producer Bacteria in Goat Kid Microbiome. Frontiers in Microbiology, 2020, 11, 548737.	1.5	17
48	An Assessment of the Molecular Diversity of Ticks and Tick-Borne Microorganisms of Small Ruminants in Pakistan. Microorganisms, 2020, 8, 1428.	1.6	21
49	Ticks and Tick-Borne Diseases in Cuba, Half a Century of Scientific Research. Pathogens, 2020, 9, 616.	1.2	11
50	Vaccination with Alpha-Gal Protects Against Mycobacterial Infection in the Zebrafish Model of Tuberculosis. Vaccines, 2020, 8, 195.	2.1	25
51	Gut Microbiota Abrogates Anti-α-Gal IgA Response in Lungs and Protects against Experimental Aspergillus Infection in Poultry. Vaccines, 2020, 8, 285.	2.1	26
52	Allergic Reactions and Immunity in Response to Tick Salivary Biogenic Substances and Red Meat Consumption in the Zebrafish Model. Frontiers in Cellular and Infection Microbiology, 2020, 10, 78.	1.8	21
53	A Novel Combined Scientific and Artistic Approach for the Advanced Characterization of Interactomes: The Akirin/Subolesin Model. Vaccines, 2020, 8, 77.	2.1	22
54	Epidemiology and genetic diversity of Anaplasma marginale in Zamora-Chinchipe, Ecuador. Ticks and Tick-borne Diseases, 2020, 11, 101380.	1.1	4

#	Article	IF	CITATIONS
55	Efficient Transovarial Transmission of Babesia Spp. in Rhipicephalus microplus Ticks Fed on Water Buffalo (Bubalus bubalis). Pathogens, 2020, 9, 280.	1.2	6
56	Resistance of Tick Gut Microbiome to Anti-Tick Vaccines, Pathogen Infection and Antimicrobial Peptides. Pathogens, 2020, 9, 309.	1.2	28
57	Tick and Host Derived Compounds Detected in the Cement Complex Substance. Biomolecules, 2020, 10, 555.	1.8	32
58	Histone Methyltransferase DOT1L Is Involved in Larval Molting and Second Stage Nymphal Feeding in Ornithodoros moubata. Vaccines, 2020, 8, 157.	2.1	3
59	Infection with Toxocara canis Inhibits the Production of IgE Antibodies to α-Gal in Humans: Towards a Conceptual Framework of the Hygiene Hypothesis?. Vaccines, 2020, 8, 167.	2.1	17
60	A dataset for the analysis of antibody response to glycan alpha-Gal in individuals with immune-mediated disorders. F1000Research, 2020, 9, 1366.	0.8	3
61	A dataset for the analysis of antibody response to glycan alpha-Gal in individuals with immune-mediated disorders. F1000Research, 2020, 9, 1366.	0.8	4
62	A Capsule-Based Model for Immature Hard Tick Stages Infestation on Laboratory Mice. Journal of Visualized Experiments, 2020, , .	0.2	9
63	Editorial: Biological Drivers of Vector–Pathogen Interactions. Frontiers in Cellular and Infection Microbiology, 2020, 10, 609495.	1.8	2
64	Antibacterial and antifungal activity of defensins from the Australian paralysis tick, Ixodes holocyclus. Ticks and Tick-borne Diseases, 2019, 10, 101269.	1.1	11
65	Sex-Specific Linkages Between Taxonomic and Functional Profiles of Tick Gut Microbiomes. Frontiers in Cellular and Infection Microbiology, 2019, 9, 298.	1.8	34
66	Delayed hypersensitivity reaction to mammalian galactose-α-1,3-galactose (α-Gal) after repeated tick bites in a patient from France. Ticks and Tick-borne Diseases, 2019, 10, 1057-1059.	1.1	12
67	Evolutionary Insights into the Tick Hologenome. Trends in Parasitology, 2019, 35, 725-737.	1.5	43
68	Clinical gamasoidosis and antibody response in two patients infested with Ornithonyssus bursa (Acari: Gamasida: Macronyssidae). Experimental and Applied Acarology, 2019, 78, 555-564.	0.7	12
69	Isolation and Characterization of a Novel Pathogenic Strain of Ehrlichia minasensis. Microorganisms, 2019, 7, 528.	1.6	24
70	The Good, the Bad and the Tick. Frontiers in Cell and Developmental Biology, 2019, 7, 79.	1.8	4
71	The redox metabolic pathways function to limit Anaplasma phagocytophilum infection and multiplication while preserving fitness in tick vector cells. Scientific Reports, 2019, 9, 13236.	1.6	17
72	Tick Bites Induce Anti-α-Gal Antibodies in Dogs. Vaccines, 2019, 7, 114.	2.1	16

#	Article	IF	CITATIONS
73	High co-infection rates of Babesia bovis, Babesia bigemina, and Anaplasma marginale in water buffalo in Western Cuba. Parasitology Research, 2019, 118, 955-967.	0.6	20
74	Tick–Pathogen Interactions: The Metabolic Perspective. Trends in Parasitology, 2019, 35, 316-328.	1.5	26
75	Modeling Modulation of the Tick Regulome in Response to Anaplasma phagocytophilum for the Identification of New Control Targets. Frontiers in Physiology, 2019, 10, 462.	1.3	10
76	Environmental and Molecular Drivers of the α-Gal Syndrome. Frontiers in Immunology, 2019, 10, 1210.	2.2	80
77	Anaplasma phagocytophilum modifies tick cell microRNA expression and upregulates isc-mir-79 to facilitate infection by targeting the Roundabout protein 2 pathway. Scientific Reports, 2019, 9, 9073.	1.6	12
78	Molecular identification of spotted fever group Rickettsia in ticks collected from dogs and small ruminants in Greece. Experimental and Applied Acarology, 2019, 78, 421-430.	0.7	9
79	Complete Genome Sequence of an <i>Ehrlichia minasensis</i> Strain Isolated from Cattle. Microbiology Resource Announcements, 2019, 8, .	0.3	11
80	The Drosophila melanogaster antimicrobial peptides Mtk-1 and Mtk-2 are active against the malarial parasite Plasmodium falciparum. Parasitology Research, 2019, 118, 1993-1998.	0.6	18
81	Detection of Rickettsia spp. in Rhipicephalus sanguineus (sensu lato) collected from free-roaming dogs in Coahuila state, northern Mexico. Parasites and Vectors, 2019, 12, 130.	1.0	21
82	Ehrlichia minasensis, an old demon with a new name. Ticks and Tick-borne Diseases, 2019, 10, 828-829.	1.1	14
83	Phyloproteomic and functional analyses do not support a split in the genus Borrelia (phylum) Tj ETQq1 1 0.7843	14 ₅ gBT /(Overlock 10 T
84	The alpha-Gal syndrome: new insights into the tick-host conflict and cooperation. Parasites and Vectors, 2019, 12, 154.	1.0	38
85	Towards the integrative analysis of tick microbiome. Ticks and Tick-borne Diseases, 2019, 10, 34-35.	1.1	10
86	Low genetic diversity of Ehrlichia canis associated with high co-infection rates in Rhipicephalus sanguineus (s.l.). Parasites and Vectors, 2019, 12, 12.	1.0	20
87	Epidemiology and genetic diversity of Anaplasma ovis in goats in Corsica, France. Parasites and Vectors, 2019, 12, 3.	1.0	48
88	Guillain-Barré and Alpha-gal Syndromes: Saccharides-induced Immune Responses. Exploratory Research and Hypothesis in Medicine, 2019, 000, 000-000.	0.1	8
89	Reservoir and vector evolutionary pressures shaped the adaptation of Borrelia. Infection, Genetics and Evolution, 2018, 66, 308-318.	1.0	18
90	Tick-borne pathogen detection: what's new?. Microbes and Infection, 2018, 20, 441-444.	1.0	20

#	Article	IF	CITATIONS
91	Antiplasmodial activity of tick defensins in a mouse model of malaria. Ticks and Tick-borne Diseases, 2018, 9, 844-849.	1.1	15
92	Identification and molecular characterization of spotted fever group rickettsiae in ticks collected from farm ruminants in Lebanon. Ticks and Tick-borne Diseases, 2018, 9, 104-108.	1.1	18
93	Functional Evolution of Subolesin/Akirin. Frontiers in Physiology, 2018, 9, 1612.	1.3	49
94	Tick galactosyltransferases are involved in α-Gal synthesis and play a role during Anaplasma phagocytophilum infection and Ixodes scapularis tick vector development. Scientific Reports, 2018, 8, 14224.	1.6	68
95	Molecular evidence of the reservoir competence of water buffalo (Bubalus bubalis) for Anaplasma marginale in Cuba. Veterinary Parasitology: Regional Studies and Reports, 2018, 13, 180-187.	0.3	10
96	High Throughput Sequencing and Network Analysis Disentangle the Microbial Communities of Ticks and Hosts Within and Between Ecosystems. Frontiers in Cellular and Infection Microbiology, 2018, 8, 236.	1.8	62
97	First molecular evidence of Babesia caballi and Theileria equi infections in horses in Cuba. Parasitology Research, 2018, 117, 3109-3118.	0.6	21
98	mRNA export in the apicomplexan parasite Toxoplasma gondii: emerging divergent components of a crucial pathway. Parasites and Vectors, 2018, 11, 62.	1.0	7
99	Use of Graph Theory to Characterize Human and Arthropod Vector Cell Protein Response to Infection With Anaplasma phagocytophilum. Frontiers in Cellular and Infection Microbiology, 2018, 8, 265.	1.8	30
100	Salivary Prostaglandin E2: Role in Tick-Induced Allergy to Red Meat. Trends in Parasitology, 2017, 33, 495-498.	1.5	27
101	Effect of blood type on anti-α-Gal immunity and the incidence of infectious diseases. Experimental and Molecular Medicine, 2017, 49, e301-e301.	3.2	75
102	Combination of RT-PCR and proteomics for the identification of Crimean-Congo hemorrhagic fever virus in ticks. Heliyon, 2017, 3, e00353.	1.4	10
103	Targeting a global health problem: Vaccine design and challenges for the control of tick-borne diseases. Vaccine, 2017, 35, 5089-5094.	1.7	74
104	Prevalence of type I sensitization to alphaâ€gal in forest service employees and hunters: Is the blood type an overlooked risk factor in epidemiological studies of the αâ€Gal syndrome?. Allergy: European Journal of Allergy and Clinical Immunology, 2017, 72, 2044-2047.	2.7	16
105	Immunity to α-Gal: Toward a Single-Antigen Pan-Vaccine To Control Major Infectious Diseases. ACS Central Science, 2017, 3, 1140-1142.	5.3	31
106	Molecular survey of Rickettsial organisms in ectoparasites from a dog shelter in Northern Mexico. Veterinary Parasitology: Regional Studies and Reports, 2017, 10, 143-148.	0.3	2
107	Heat Shock Proteins in Vector-pathogen Interactions: The Anaplasma phagocytophilum Model. Heat Shock Proteins, 2017, , 375-398.	0.2	4
108	Anaplasma phagocytophilum Infection Subverts Carbohydrate Metabolic Pathways in the Tick Vector, Ixodes scapularis. Frontiers in Cellular and Infection Microbiology, 2017, 7, 23.	1.8	66

#	Article	IF	CITATIONS
109	Tick-Pathogen Ensembles: Do Molecular Interactions Lead Ecological Innovation?. Frontiers in Cellular and Infection Microbiology, 2017, 7, 74.	1.8	22
110	Tick-Pathogen Interactions and Vector Competence: Identification of Molecular Drivers for Tick-Borne Diseases. Frontiers in Cellular and Infection Microbiology, 2017, 7, 114.	1.8	321
111	Functional Redundancy and Ecological Innovation Shape the Circulation of Tick-Transmitted Pathogens. Frontiers in Cellular and Infection Microbiology, 2017, 7, 234.	1.8	10
112	Anaplasma phagocytophilum MSP4 and HSP70 Proteins Are Involved in Interactions with Host Cells during Pathogen Infection. Frontiers in Cellular and Infection Microbiology, 2017, 7, 307.	1.8	44
113	Ixodes scapularis Tick Cells Control Anaplasma phagocytophilum Infection by Increasing the Synthesis of Phosphoenolpyruvate from Tyrosine. Frontiers in Cellular and Infection Microbiology, 2017, 7, 375.	1.8	28
114	Ticks and Tick-Borne Pathogens of the Caribbean: Current Understanding and Future Directions for More Comprehensive Surveillance. Frontiers in Cellular and Infection Microbiology, 2017, 7, 490.	1.8	58
115	Immunity to α-Gal: The Opportunity for Malaria and Tuberculosis Control. Frontiers in Immunology, 2017, 8, 1733.	2.2	17
116	Remodeling of tick cytoskeleton in response to infection with i Anaplasma phagocytophilum i. Frontiers in Bioscience - Landmark, 2017, 22, 1830-1844.	3.0	7
117	Tick-host conflict: immunoglobulin E antibodies to tick proteins in patients with anaphylaxis to tick bite. Oncotarget, 2017, 8, 20630-20644.	0.8	54
118	Anaplasma phagocytophilum Manipulates Host Cell Apoptosis by Different Mechanisms to Establish Infection. Veterinary Sciences, 2016, 3, 15.	0.6	23
119	Identification of Plasmodium falciparum Translation Initiation eIF2β Subunit: Direct Interaction with Protein Phosphatase Type 1. Frontiers in Microbiology, 2016, 7, 777.	1.5	18
120	Antiplasmodial Activity Is an Ancient and Conserved Feature of Tick Defensins. Frontiers in Microbiology, 2016, 7, 1682.	1.5	17
121	The intracellular bacterium Anaplasma phagocytophilum selectively manipulates the levels of vertebrate host proteins in the tick vector Ixodes scapularis. Parasites and Vectors, 2016, 9, 467.	1.0	33
122	Tick–Host–Pathogen Interactions: Conflict and Cooperation. PLoS Pathogens, 2016, 12, e1005488.	2.1	96
123	Be Aware of Ticks When Strolling through the Park. Frontiers for Young Minds, 2016, 4, .	0.8	1
124	First report of spotted fever group Rickettsia in Cuba. Ticks and Tick-borne Diseases, 2016, 7, 1057-1058.	1.1	9
125	<i>Anaplasma phagocytophilum</i> increases the levels of histone modifying enzymes to inhibit cell apoptosis and facilitate pathogen infection in the tick vector <i>lxodes scapularis</i> . Epigenetics, 2016, 11, 303-319.	1.3	73
126	A comparison of the performance of regression models of Amblyomma americanum (L.) (Ixodidae) using life cycle or landscape data from administrative divisions. Ticks and Tick-borne Diseases, 2016, 7, 624-630.	1.1	7

#	Article	IF	CITATIONS
127	Control of vector-borne infectious diseases by human immunity against α-Gal. Expert Review of Vaccines, 2016, 15, 953-955.	2.0	18
128	Nested coevolutionary networks shape the ecological relationships of ticks, hosts, and the Lyme disease bacteria of the Borrelia burgdorferi (s.l.) complex. Parasites and Vectors, 2016, 9, 517.	1.0	44
129	Substrate prediction of Ixodes ricinus salivary lipocalins differentially expressed during Borrelia afzelii infection. Scientific Reports, 2016, 6, 32372.	1.6	29
130	Detection and phylogenetic characterization of Theileria spp. and Anaplasma marginale in Rhipicephalus bursa in Portugal. Ticks and Tick-borne Diseases, 2016, 7, 443-448.	1.1	39
131	Molecular identification and characterization of Anaplasma platys and Ehrlichia canis in dogs in Mexico. Ticks and Tick-borne Diseases, 2016, 7, 276-283.	1.1	49
132	Anaplasma phagocytophilum Uses Common Strategies for Infection of Ticks and Vertebrate Hosts. Trends in Microbiology, 2016, 24, 173-180.	3.5	88
133	Ehrlichia minasensis sp. nov., isolated from the tick Rhipicephalus microplus. International Journal of Systematic and Evolutionary Microbiology, 2016, 66, 1426-1430.	0.8	81
134	Regulation of the Immune Response to α-Gal and Vector-borne Diseases. Trends in Parasitology, 2015, 31, 470-476.	1.5	34
135	Fast evolutionary rates associated with functional loss in class I glucose transporters of Schistosoma mansoni. BMC Genomics, 2015, 16, 980.	1.2	6
136	Gene expression changes in the salivary glands of Anopheles coluzzii elicited by Plasmodium berghei infection. Parasites and Vectors, 2015, 8, 485.	1.0	17
137	Identification and Characterization of Anaplasma phagocytophilum Proteins Involved in Infection of the Tick Vector, Ixodes scapularis. PLoS ONE, 2015, 10, e0137237.	1.1	31
138	Interactions between tick and transmitted pathogens evolved to minimise competition through nested and coherent networks. Scientific Reports, 2015, 5, 10361.	1.6	81
139	Complete Genome Sequences of Field Isolates of Mycobacterium bovis and Mycobacterium caprae. Genome Announcements, 2015, 3, .	0.8	4
140	Complete Genome Sequence of Ehrlichia mineirensis, a Novel Organism Closely Related to Ehrlichia canis with a New Host Association. Genome Announcements, 2015, 3, .	0.8	11
141	Characterization of two strains of Anaplasma marginale isolated from cattle in Rio de Janeiro, Brazil, after propagation in tick cell culture. Ticks and Tick-borne Diseases, 2015, 6, 141-145.	1.1	15
142	Infection of Ixodes spp. tick cells with different Anaplasma phagocytophilum isolates induces the inhibition of apoptotic cell death. Ticks and Tick-borne Diseases, 2015, 6, 758-767.	1.1	43
143	Systems Biology of Tissue-Specific Response to Anaplasma phagocytophilum Reveals Differentiated Apoptosis in the Tick Vector Ixodes scapularis. PLoS Genetics, 2015, 11, e1005120.	1.5	139
144	Molecular and immunological characterization of three strains of Anaplasma marginale grown in cultured tick cells. Ticks and Tick-borne Diseases, 2015, 6, 522-529.	1.1	9

#	Article	IF	CITATIONS
145	Anaplasma marginale major surface protein 1a: A marker of strain diversity with implications for control of bovine anaplasmosis. Ticks and Tick-borne Diseases, 2015, 6, 205-210.	1.1	22
146	Tribolium castaneum defensins are primarily active against Gram-positive bacteria. Journal of Invertebrate Pathology, 2015, 132, 208-215.	1.5	33
147	Schistosome sirtuins as drug targets. Future Medicinal Chemistry, 2015, 7, 765-782.	1.1	19
148	Flying ticks: anciently evolved associations that constitute a risk of infectious disease spread. Parasites and Vectors, 2015, 8, 538.	1.0	52
149	Ixodes ricinus defensins attack distantly-related pathogens. Developmental and Comparative Immunology, 2015, 53, 358-365.	1.0	32
150	Comparative Genomics of Field Isolates of Mycobacterium bovis and M. caprae Provides Evidence for Possible Correlates with Bacterial Viability and Virulence. PLoS Neglected Tropical Diseases, 2015, 9, e0004232.	1.3	28
151	Nuclease Tudor-SN Is Involved in Tick dsRNA-Mediated RNA Interference and Feeding but Not in Defense against Flaviviral or Anaplasma phagocytophilum Rickettsial Infection. PLoS ONE, 2015, 10, e0133038.	1.1	23
152	The genus Anaplasma: new challenges after reclassification. OIE Revue Scientifique Et Technique, 2015, 34, 577-586.	0.5	67
153	The glycoprotein TRP36 of Ehrlichia sp. UFMG-EV and related cattle pathogen Ehrlichia sp. UFMT-BV evolved from a highly variable clade of E. canis under adaptive diversifying selection. Parasites and Vectors, 2014, 7, 584.	1.0	27
154	Epigenetic control of gene function in schistosomes: a source of therapeutic targets?. Frontiers in Genetics, 2014, 5, 317.	1.1	34
155	Defensins from the tick Ixodes scapularis are effective against phytopathogenic fungi and the human bacterial pathogen Listeria grayi. Parasites and Vectors, 2014, 7, 554.	1.0	28
156	In vitro culture and structural differences in the major immunoreactive protein gp36 of geographically distant Ehrlichia canis isolates. Ticks and Tick-borne Diseases, 2014, 5, 423-431.	1.1	25
157	Understanding the evolutionary structural variability and target specificity of tick salivary Kunitz peptides using next generation transcriptome data. BMC Evolutionary Biology, 2014, 14, 4.	3.2	31
158	Cancer research meets tick vectors for infectious diseases. Lancet Infectious Diseases, The, 2014, 14, 916-917.	4.6	17
159	Epidemiology and evolution of the genetic variability of Anaplasma marginale in South Africa. Ticks and Tick-borne Diseases, 2014, 5, 624-631.	1.1	34
160	Low genetic diversity associated with low prevalence of Anaplasma marginale in water buffaloes in Marajó Island, Brazil. Ticks and Tick-borne Diseases, 2014, 5, 801-804.	1.1	19
161	Infection of water buffalo in Rio de Janeiro Brazil with Anaplasma marginale strains also reported in cattle. Veterinary Parasitology, 2014, 205, 730-734.	0.7	16
162	Identification and partial characterisation of new members of the Ixodes ricinus defensin family. Gene, 2014, 540, 146-152.	1.0	23

#	Article	IF	CITATIONS
163	Are ticks venomous animals?. Frontiers in Zoology, 2014, 11, 47.	0.9	68
164	Ultrastructure of Ehrlichia mineirensis, a new member of the Ehrlichia genus. Veterinary Microbiology, 2013, 167, 455-458.	0.8	20
165	Novel Immunomodulators from Hard Ticks Selectively Reprogramme Human Dendritic Cell Responses. PLoS Pathogens, 2013, 9, e1003450.	2.1	71
166	<i>In vitro</i> Culture of a Novel Genotype of <i>Ehrlichia</i> sp. from Brazil. Transboundary and Emerging Diseases, 2013, 60, 86-92.	1.3	21
167	Detection of genetic diversity of Anaplasma marginale isolates in Minas Gerais, Brazil. Brazilian Journal of Veterinary Parasitology, 2013, 22, 129-135.	0.2	32
168	Functional and Immunological Relevance of Anaplasma marginale Major Surface Protein 1a Sequence and Structural Analysis. PLoS ONE, 2013, 8, e65243.	1.1	46
169	Handling the Microbial Complexity Associated to Ticks. , 0, , .		14
170	Murine Mammary Carcinoma Induces Chronic Systemic Inflammation and Immunosuppression in BALB/c Mice. Journal of Breast Cancer, 0, 25, .	0.8	2