
Yasuki Endo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6539915/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fine and hyperfine coupling constants of the <i>cis</i> -β-cyanovinyl radical, HCCHCN. Physical Chemistry Chemical Physics, 2022, 24, 11585-11591.	1.3	2
2	Laboratory microwave spectroscopy of the doubly deuterated cyanomethyl radical, D2CCN. Journal of Molecular Spectroscopy, 2021, 377, 111448.	0.4	1
3	Reactivity and internal dynamics in the Criegee intermediate CH2OO CO2 system: A rotational study. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 260, 119945.	2.0	1
4	Spectroscopic detection of gas-phase HOSO2. Physical Chemistry Chemical Physics, 2021, 23, 25063-25069.	1.3	1
5	Observation of hydroperoxyethyl formate from the reaction between the methyl Criegee intermediate and formic acid. Physical Chemistry Chemical Physics, 2020, 22, 446-454.	1.3	15
6	Criegee intermediates meet rotational spectroscopy. International Reviews in Physical Chemistry, 2020, 39, 351-384.	0.9	12
7	Detection of a Criegee Intermediate with an Unsaturated Hydrocarbon Substituent: Fourier-Transform Microwave Spectroscopy of Methyl Vinyl Ketone Oxide. Journal of Physical Chemistry A, 2020, 124, 6203-6206.	1.1	7
8	Probing Criegee intermediate reactions with methanol by FTMW spectroscopy. Physical Chemistry Chemical Physics, 2020, 22, 13756-13763.	1.3	6
9	Fourier-transform microwave spectroscopy on weakly bound complexes of CH2OO with Ar, CO, and N2. Journal of Chemical Physics, 2019, 151, 064301.	1.2	2
10	The Criegee intermediate-formic acid reaction explored by rotational spectroscopy. Physical Chemistry Chemical Physics, 2019, 21, 18059-18064.	1.3	17
11	Fourier transform microwave spectroscopy of Criegee intermediates: The conformational behaviour of butyraldehyde oxide. Journal of Chemical Physics, 2019, 150, 104301.	1.2	10
12	Pure rotational spectrum of cis-OSOO. Chemical Physics Letters, 2019, 725, 14-17.	1.2	5
13	The reactivity of the Criegee intermediate CH3CHOO with water probed by FTMW spectroscopy. Journal of Chemical Physics, 2018, 148, 014308.	1.2	17
14	Fourier transform microwave spectroscopy of the SiCl + ion. Journal of Molecular Spectroscopy, 2018, 345, 39-45.	0.4	0
15	High-resolution vibration–rotational spectra and rotational perturbation of the OO-stretching (<i>î¼/2</i> ₆) band of CH ₂ OO between 879.5 and 932.0 cm ^{â^1} . Physical Chemistry Chemical Physics, 2018, 20, 25806-25811.	1.3	12
16	Probing the methyl torsional barriers of the doubly substituted methyl-ethyl Criegee intermediate by FTMW spectroscopy. Journal of Molecular Spectroscopy, 2018, 353, 23-27.	0.4	6
17	Conformational preferences of Criegee intermediates: Isopropyl substituted carbonyl oxide. Journal of Chemical Physics, 2018, 149, 084309.	1.2	12
18	Identification and Self-Reaction Kinetics of Criegee Intermediates <i>syn</i> -CH ₃ CHOO and CH ₂ OO via High-Resolution Infrared Spectra with a Quantum-Cascade Laser. Journal of Physical Chemistry Letters, 2018, 9, 4391-4395.	2.1	28

Yasuki Endo

#	Article	IF	CITATIONS
19	The reaction between the methyl Criegee intermediate and hydrogen chloride: an FTMW spectroscopic study. Physical Chemistry Chemical Physics, 2018, 20, 22569-22575.	1.3	8
20	Probing the conformational behavior of the doubly substituted methyl-ethyl Criegee intermediate by FTMW spectroscopy. Journal of Chemical Physics, 2017, 146, 174304.	1.2	20
21	Spectroscopic Characterization of the Reaction Products between the Criegee Intermediate CH ₂ OO and HCl. ChemPhysChem, 2017, 18, 1860-1863.	1.0	15
22	Detection of Microwave Transitions between Ortho and Para States in a Free Isolated Molecule. Physical Review Letters, 2017, 119, 173401.	2.9	15
23	Fourier-transform microwave spectroscopy of a halogen substituted Criegee intermediate ClCHOO. Journal of Chemical Physics, 2016, 145, 184304.	1.2	32
24	Conformational analysis of ethyl-substituted Criegee intermediate by FTMW spectroscopy. Journal of Chemical Physics, 2016, 145, 224314.	1.2	16
25	Fourier-transform microwave spectroscopy of dimethyl-substituted Criegee intermediate (CH3)2COO. Journal of Chemical Physics, 2016, 145, 244307.	1.2	14
26	Observation of hydroxymethyl hydroperoxide in a reaction system containing CH2OO and water vapor through pure rotational spectroscopy. Journal of Chemical Physics, 2015, 143, 164307.	1.2	17
27	An experimental and theoretical study on rotational constants of vibrationally excited CH2OO. Chemical Physics Letters, 2015, 621, 129-133.	1.2	25
28	Fourier-transform microwave spectroscopy of an alkyl substituted Criegee intermediate anti-CH3CHOO. Journal of Molecular Spectroscopy, 2015, 310, 109-112.	0.4	37
29	Communication: Spectroscopic characterization of an alkyl substituted Criegee intermediate <i>syn</i> -CH3CHOO through pure rotational transitions. Journal of Chemical Physics, 2014, 140, 011101.	1.2	62
30	Spectroscopic characterization of the complex between water and the simplest Criegee intermediate CH2OO. Journal of Chemical Physics, 2014, 140, 134302.	1.2	24
31	Communication: Determination of the molecular structure of the simplest Criegee intermediate CH2OO. Journal of Chemical Physics, 2013, 139, 101103.	1.2	124
32	Spectroscopy of Ar–SH and Ar–SD. I. Observation of rotation-vibration transitions of a van der Waals mode by double-resonance spectroscopy. Journal of Chemical Physics, 2005, 123, 054324.	1.2	66
33	The Rotational Spectrum and Structure of the HOOO Radical. Science, 2005, 308, 1885-1886.	6.0	110
34	Determination of the proton tunneling splitting of tropolone in the ground state by microwave spectroscopy. Journal of Chemical Physics, 1999, 110, 1969-1978.	1.2	76
35	Laser-induced fluorescence spectroscopy of the C4H and C4D radicals in a supersonic jet. Journal of Chemical Physics, 1998, 108, 3465-3478.	1.2	62
36	Laser-induced fluorescence spectroscopy of the C̃ 2Σ+â~'X̃ 2Î1/2 band system of jet-cooled CCN radi Journal of Chemical Physics, 1997, 106, 5429-5438.	cal. 1.2	30

Yasuki Endo

#	Article	IF	CITATIONS
37	Rotational spectrum of the Ar–HCO+ ionic complex. Journal of Chemical Physics, 1997, 106, 2977-2979.	1.2	41
38	HIGH-RESOLUTION SPECTROSCOPY OF TRANSIENT MOLECULES AND ITS APPLICATIONS TO MOLECULAR DYNAMICS. Advanced Series in Physical Chemistry, 1997, , 1-55.	1.5	0
39	Pulsedâ€dischargeâ€nozzle Fourierâ€transform microwave spectroscopy of HC3S(2Îr) and HC4S(2Îi). Journal of Chemical Physics, 1994, 101, 7342-7349.	1.2	79
40	Pulsedâ€discharge nozzle Fourierâ€ŧransform microwave spectroscopy of the HC4O radical. Journal of Chemical Physics, 1994, 101, 6463-6469.	1.2	27
41	Fourierâ€transform microwave spectroscopy of the HCCN radical. Determination of the hyperfine coupling constants. Journal of Chemical Physics, 1993, 98, 6618-6623.	1.2	34
42	Rotational spectra, structure, and intramolecular force field of the Hg–OCS van der Waals complex. Journal of Chemical Physics, 1991, 94, 6989-6994.	1.2	53
43	Fourier transform microwave spectroscopy of Hg–CO2. Journal of Chemical Physics, 1991, 95, 4772-4777.	1.2	16
44	Observation of the pure rotational spectra of the ArOH and ArOD complexes by a Fourierâ€ŧransform microwave spectrometer. Journal of Chemical Physics, 1991, 95, 7001-7003.	1.2	62
45	Rotational spectrum and internal rotation of a methane–HCl complex. Journal of Chemical Physics, 1990, 93, 6256-6265.	1.2	76
46	Pure rotational spectrum of the mercury–argon van der Waals complex. Journal of Chemical Physics, 1990, 92, 3990-3991.	1.2	27
47	Microwave spectra of deuterated ethanes: Internal rotation potential function and rz structure. Journal of Molecular Spectroscopy, 1981, 89, 285-295.	0.4	113