
Glenn A Burton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6539898/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Slipping through the Cracks: Why is the U.S. Environmental Protection Agency Not Funding Extramural Research on Chemicals in Our Environment?. Environmental Science & Technology, 2017, 51, 755-756.	4.6	16
2	Metal Oxides in Surface Sediment Control Nickel Bioavailability to Benthic Macroinvertebrates. Environmental Science & Technology, 2017, 51, 13407-13416.	4.6	10
3	Stressor Exposures Determine Risk: So, Why Do Fellow Scientists Continue To Focus on Superficial Microplastics Risk?. Environmental Science & Technology, 2017, 51, 13515-13516.	4.6	86
4	Net methylmercury production in 2 contrasting stream sediments and associated accumulation and toxicity to periphyton. Environmental Toxicology and Chemistry, 2016, 35, 1759-1765.	2.2	11
5	Stephen J. Klaine. Environmental Toxicology and Chemistry, 2016, 35, 1607-1608.	2.2	1
6	Announcing <i>Critical Perspectives</i> . Environmental Toxicology and Chemistry, 2016, 35, 528-528.	2.2	0
7	Toxicological effects of shortâ€ŧerm resuspension of metalâ€contaminated freshwater and marine sediments. Environmental Toxicology and Chemistry, 2016, 35, 676-686.	2.2	36
8	Macroinvertebrate responses to nickel in multisystem exposures. Environmental Toxicology and Chemistry, 2016, 35, 101-114.	2.2	6
9	Nickel toxicity to benthic organisms: The role of dissolved organic carbon, suspended solids, and route of exposure. Environmental Pollution, 2016, 208, 309-317.	3.7	23
10	Microplastic as a Vector for Chemicals in the Aquatic Environment: Critical Review and Model-Supported Reinterpretation of Empirical Studies. Environmental Science & Technology, 2016, 50, 3315-3326.	4.6	1,031
11	Characterization of ecological risks from environmental releases of decamethylcyclopentasiloxane (D5). Environmental Toxicology and Chemistry, 2015, 34, 2715-2722.	2.2	21
12	Losing sight of science in the regulatory push to ban microbeads from consumer products and industrial use. Integrated Environmental Assessment and Management, 2015, 11, 346-347.	1.6	15
13	Rating impacts in a multiâ€stressor world: a quantitative assessment of 50 stressors affecting the Great Lakes. Ecological Applications, 2015, 25, 717-728.	1.8	60
14	Hydraulic "Frackingâ€: Are surface water impacts an ecological concern?. Environmental Toxicology and Chemistry, 2014, 33, 1679-1689.	2.2	80
15	Announcing thePerspectivescolumn. Environmental Toxicology and Chemistry, 2014, 33, 4-4.	2.2	0
16	The importance of scientific peer review at SETAC. Integrated Environmental Assessment and Management, 2014, 10, 1-2.	1.6	1
17	Response of stream ecosystem function and structure to sediment metal: Context-dependency and variation among endpoints. Elementa, 2014, 2, .	1.1	15
18	Assessing sediment toxicity: Past, present, and future. Environmental Toxicology and Chemistry, 2013, 32, 1438-1440.	2.2	35

GLENN A BURTON

#	Article	IF	CITATIONS
19	Joint analysis of stressors and ecosystem services to enhance restoration effectiveness. Proceedings of the United States of America, 2013, 110, 372-377.	3.3	305
20	Interactive effects of phosphorus and copper on Hyalella azteca via periphyton in aquatic ecosystems. Ecotoxicology and Environmental Safety, 2012, 83, 41-46.	2.9	13
21	Evaluating the Performance of Diffusive Gradients in Thin Films for Predicting Ni Sediment Toxicity. Environmental Science & Technology, 2012, 46, 10239-10246.	4.6	43
22	Shortâ€ŧerm macroinvertebrate recruitment and sediment accumulation: A novel field chamber approach. Environmental Toxicology and Chemistry, 2012, 31, 1098-1106.	2.2	7
23	Clarifying and expanding the focus of Environmental Toxicology and Chemistry. Environmental Toxicology and Chemistry, 2012, 31, 1423-1423.	2.2	0
24	A sediment ecotoxicity assessment platform for in situ measures of chemistry, bioaccumulation and toxicity. Part 2: Integrated application to a shallow estuary. Environmental Pollution, 2012, 162, 457-465.	3.7	24
25	A sediment ecotoxicity assessment platform for in situ measures of chemistry, bioaccumulation and toxicity. Part 1: System description and proof of concept. Environmental Pollution, 2012, 162, 449-456.	3.7	24
26	Making ecosystem reality checks the status quo. Environmental Toxicology and Chemistry, 2012, 31, 459-468.	2.2	24
27	Field measurement of nickel sediment toxicity: Role of acid volatile sulfide. Environmental Toxicology and Chemistry, 2011, 30, 162-172.	2.2	18
28	Measurements of acid volatile sulfide and simultaneously extracted metals are irreproducible among laboratories. Environmental Toxicology and Chemistry, 2010, 29, 1453-1456.	2.2	19
29	Effects of suspended solids and dissolved organic carbon on nickel toxicity. Environmental Toxicology and Chemistry, 2010, 29, 1781-1787.	2.2	24
30	Assessing contaminated sediments in the context of multiple stressors. Environmental Toxicology and Chemistry, 2010, 29, 2625-2643.	2.2	134
31	Chronic exposure to fluoxetine (Prozac) causes developmental delays in <i>Rana pipiens</i> larvae. Environmental Toxicology and Chemistry, 2010, 29, 2845-2850.	2.2	57
32	Enhancing the ecological risk assessment process. Integrated Environmental Assessment and Management, 2008, 4, 306-313.	1.6	59
33	Isonychia spp. and macroinvertebrate community responses to stressors in streams utilizing the benthic in situ toxicity identification evaluation (BiTIE) method. Environmental Pollution, 2008, 151, 101-109.	3.7	6
34	Quantitative Lines of Evidence for Screening-Level Diagnostic Assessment of Regional Fish Community Impacts: A Comparison of Spatial Database Evaluation Methods. Environmental Science & Technology, 2008, 42, 9412-9418.	4.6	22
35	CHARACTERIZING SEDIMENT ACID VOLATILE SULFIDE CONCENTRATIONS IN EUROPEAN STREAMS. Environmental Toxicology and Chemistry, 2007, 26, 1.	2.2	45
36	Review of Aquatic In Situ Approaches for Stressor and Effect Diagnosis. Integrated Environmental Assessment and Management, 2007, 3, 234.	1.6	87

GLENN A BURTON

#	Article	IF	CITATIONS
37	Summary and Recommendations from a SETAC Pellston Workshop on In Situ Measures of Ecological Effects. Integrated Environmental Assessment and Management, 2007, 3, 275.	1.6	9
38	DETERMINING STRESSOR PRESENCE IN STREAMS RECEIVING URBAN AND AGRICULTURAL RUNOFF: DEVELOPMENT OF A BENTHIC IN SITU TOXICITY IDENTIFICATION EVALUATION METHOD. Environmental Toxicology and Chemistry, 2006, 25, 2299.	2.2	7
39	A GEOGRAPHIC INFORMATION SYSTEMS–BASED, WEIGHTS-OF-EVIDENCE APPROACH FOR DIAGNOSING AQUATIC ECOSYSTEM IMPAIRMENT. Environmental Toxicology and Chemistry, 2006, 25, 2237.	2.2	22
40	FIELD VALIDATION OF SEDIMENT ZINC TOXICITY. Environmental Toxicology and Chemistry, 2005, 24, 541.	2.2	75
41	GENE EXPRESSION IN CAGED FISH AS A FIRST-TIER INDICATOR OF CONTAMINANT EXPOSURE IN STREAMS. Environmental Toxicology and Chemistry, 2005, 24, 3092.	2.2	25
42	In situ exposures using caged organisms: a multi-compartment approach to detect aquatic toxicity and bioaccumulation. Environmental Pollution, 2005, 134, 133-144.	3.7	100
43	EFFECT OF 3,4,3′,4′-TETRACHLOROBIPHENYL ON THE REWORKING BEHAVIOR OF LUMBRICULUS VARIEGAT EXPOSED TO CONTAMINATED SEDIMENT. Environmental Toxicology and Chemistry, 2004, 23, 178.	US 2.2	21
44	COMPARING BEHAVIORAL AND CHRONIC ENDPOINTS TO EVALUATE THE RESPONSE OF LUMBRICULUS VARIEGATUS TO 3,4,3′,4′-TETRACHLOROBIPHENYL SEDIMENT EXPOSURES. Environmental Toxicology and Chemistry, 2004, 23, 187.	2.2	17
45	AN IN SITU TOXICITY IDENTIFICATION EVALUATION METHOD PART I: LABORATORY VALIDATION. Environmental Toxicology and Chemistry, 2004, 23, 2844.	2.2	24
46	AN IN SITU TOXICITY IDENTIFICATION EVALUATION METHOD PART II: FIELD VALIDATION. Environmental Toxicology and Chemistry, 2004, 23, 2851.	2.2	23
47	A Weight-of-Evidence Framework for Assessing Sediment (Or Other) Contamination: Improving Certainty in the Decision-Making Process. Human and Ecological Risk Assessment (HERA), 2002, 8, 1675-1696.	1.7	93
48	Biological Responses of Lumbriculus variegatus Exposed to Fluoranthene-Spiked Sediment. Archives of Environmental Contamination and Toxicology, 2002, 42, 292-302.	2.1	35
49	Photo-induced toxicity of PAHs to Hyalella azteca and Chironomus tentans: effects of mixtures and behavior. Environmental Pollution, 1999, 106, 157-167.	3.7	50
50	Sediment toxicity and stormwater runoff in a contaminated receiving system: consideration of different bioassays in the laboratory and field. Chemosphere, 1999, 39, 1001-1017.	4.2	47
51	Carrier effects of dosing the h4iie cells with 3,3′,4,4tt´etrachlorobiphenyl (PCB77) in dimethyl sulfoxide or isooctane. Chemosphere, 1997, 35, 895-904.	4.2	9
52	Critical issues in sediment bioassays and toxicity testing. Journal of Aquatic Ecosystem Health, 1995, 4, 151-156.	0.4	10
53	Toxicity of contaminated sediments in dilution series with control sediments. Chemosphere, 1993, 27, 1789-1812.	4.2	24
54	ES&T Series: Assessing Contaminated Aquatic Sediments. Environmental Science & Technology, 1992, 26, 1862-1863.	4.6	32

4

GLENN A BURTON

#	Article	IF	CITATIONS
55	Sediment toxicity evaluations. Environmental Science & amp; Technology, 1992, 26, 2068-2075.	4.6	92
56	IN SITU AND LABORATORY SEDIMENT TOXICITY TESTING WITH CERIODAPHNIA DUBIA. Environmental Toxicology and Chemistry, 1991, 10, 201.	2.2	18
57	EFFECT OF SEDIMENT TEST VARIABLES ON SELENIUM TOXICITY TO DAPHNIA MAGNA. Environmental Toxicology and Chemistry, 1990, 9, 381.	2.2	9
58	A MULTITROPHIC LEVEL EVALUATION OF SEDIMENT TOXICITY IN WAUKEGAN AND INDIANA HARBORS. Environmental Toxicology and Chemistry, 1989, 8, 1057.	2.2	39
59	Aquatic microbial activity and macrofaunal profiles of an Oklahoma stream. Water Research, 1987, 21, 1173-1182.	5.3	21
60	Aeromonas hydrophila densities in thermally-altered reservoir water and sediments. Water, Air, and Soil Pollution, 1987, 34, 199-206.	1.1	3
61	STREAM PROFILE DETERMINATIONS USING MICROBIAL ACTIVITY ASSAYS AND CERIODAPHNIA. Environmental Toxicology and Chemistry, 1987, 6, 505.	2.2	7
62	A reaction chamber for study of interactions between sediments and water under conditions of static or continuous flowâ 7. Water Research, 1980, 14, 1529-1532.	5.3	12