Yhong-Hee Shim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6539791/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	PGL-1, a Predicted RNA-Binding Component of Germ Granules, Is Essential for Fertility in C. elegans. Cell, 1998, 94, 635-645.	28.9	340
2	DNA methyltransferase expression and DNA hypermethylation in human hepatocellular carcinoma. Cancer Letters, 2006, 233, 271-278.	7.2	99
3	DNA methyltransferase expression and DNA methylation in human hepatocellular carcinoma and their clinicopathological correlation. International Journal of Molecular Medicine, 0, , .	4.0	67
4	Role of cholesterol in germ-line development ofCaenorhabditis elegans. Molecular Reproduction and Development, 2002, 61, 358-366.	2.0	64
5	Expression of DNA methyltransferases in multistep hepatocarcinogenesis. Human Pathology, 2003, 34, 11-17.	2.0	62
6	Anti-aging treatments slow propagation of synucleinopathy by restoring lysosomal function. Autophagy, 2016, 12, 1849-1863.	9.1	59
7	Effects of Ginsenosides, Active Ingredients of Panax ginseng, on Development, Growth, and Life Span of Caenorhabditis elegans. Biological and Pharmaceutical Bulletin, 2007, 30, 2126-2134.	1.4	39
8	Cholesterol-producing transgenic Caenorhabditis elegans lives longer due to newly acquired enhanced stress resistance. Biochemical and Biophysical Research Communications, 2005, 328, 929-936.	2.1	33
9	cdc-25.2, a C. elegans ortholog of cdc25, is required to promote oocyte maturation. Journal of Cell Science, 2010, 123, 993-1000.	2.0	29
10	Caffeine Induces High Expression of cyp-35A Family Genes and Inhibits the Early Larval Development in Caenorhabditis elegans. Molecules and Cells, 2015, 38, 236-242.	2.6	27
11	Relationships between the larval growth inhibition ofCaenorhabditis elegans by apigenin derivatives and their structures. Archives of Pharmacal Research, 2006, 29, 582-586.	6.3	21
12	CDC-25.2, a <i>C. elegans</i> ortholog of <i>cdc25</i> , is essential for the progression of intestinal divisions. Cell Cycle, 2016, 15, 654-666.	2.6	21
13	Apigenin inhibits larval growth of <i>Caenorhabditis elegans</i> through DAFâ€16 activation. FEBS Letters, 2010, 584, 3587-3591.	2.8	20
14	Regulation of Sperm-Specific Proteins by IFE-1, a Germline-Specific Homolog of eIF4E, in C. elegans. Molecules and Cells, 2011, 31, 191-198.	2.6	19
15	A circulatory transcriptional regulation among <i>dafâ€9, dafâ€12</i> , and <i>dafâ€16</i> mediates larval development upon cholesterol starvation in <i>Caenorhabditis elegans</i> â€. Developmental Dynamics, 2010, 239, 1931-1940.	1.8	18
16	CDC-25.1 controls the rate of germline mitotic cell cycle by counteracting WEE-1.3 and by positively regulating CDK-1 in <i>Caenorhabditis elegans</i> . Cell Cycle, 2012, 11, 1354-1363.	2.6	18
17	Loss of PGL-1 and PGL-3, a family of constitutive germ-granule components, promotes germline apoptosis in <i>C. elegans</i> . Journal of Cell Science, 2016, 129, 341-53.	2.0	18
18	Identification and Characterization of a Dual-Acting Antinematodal Agent against the Pinewood Nematode, Bursaphelenchus xylophilus. PLoS ONE, 2009, 4, e7593.	2.5	17

YHONG-HEE SHIM

#	Article	IF	CITATIONS
19	A Mutation of cdc-25.1 Causes Defects in Germ Cells But Not in Somatic Tissues in C. elegans. Molecules and Cells, 2009, 28, 43-48.	2.6	17
20	<i>Caenorhabditis elegans</i> proteomics comes of age. Proteomics, 2010, 10, 846-857.	2.2	17
21	PAB-1, a Caenorhabditis elegans Poly(A)-Binding Protein, Regulates mRNA Metabolism in germline by Interacting with CGH-1 and CAR-1. PLoS ONE, 2013, 8, e84798.	2.5	16
22	C. elegans: an invaluable model organism for the proteomics studies of the cholesterol-mediated signaling pathway. Expert Review of Proteomics, 2006, 3, 439-453.	3.0	15
23	Effects of Phosphoethanolamine Supplementation on Mitochondrial Activity and Lipogenesis in a Caffeine Ingestion Caenorhabditis elegans Model. Nutrients, 2020, 12, 3348.	4.1	15
24	Cholesterol-Responsive Metabolic Proteins Are Required for Larval Development in Caenorhabditis elegans. Molecules and Cells, 2013, 36, 410-416.	2.6	14
25	Nicotinamide Supplementation Improves Oocyte Quality and Offspring Development by Modulating Mitochondrial Function in an Aged Caenorhabditis elegans Model. Antioxidants, 2021, 10, 519.	5.1	14
26	Caffeine Induces the Stress Response and Up-Regulates Heat Shock Proteins in Caenorhabditis elegans. Molecules and Cells, 2016, 39, 163-168.	2.6	14
27	Proteomic Analysis of Caenorhabditis elegans. Methods in Molecular Biology, 2009, 519, 145-169.	0.9	13
28	Maternal Caffeine Intake Disrupts Eggshell Integrity and Retards Larval Development by Reducing Yolk Production in a Caenorhabditis elegans Model. Nutrients, 2020, 12, 1334.	4.1	13
29	Inhibition of developmental processes by flavone in Caenorhabditis elegans and its application to the pinewood nematode, Bursaphelenchus xylophilus. Molecules and Cells, 2008, 26, 171-4.	2.6	13
30	Caffeine-induced food-avoidance behavior is mediated by neuroendocrine signals in Caenorhabditis elegans. BMB Reports, 2017, 50, 31-36.	2.4	12
31	Functional and phenotypic relevance of differentially expressed proteins in calcineurin mutants ofCaenorhabditis elegans. Proteomics, 2006, 6, 1340-1350.	2.2	11
32	Transgenerational effects of proton beam irradiation on Caenorhabditis elegans germline apoptosis. Biochemical and Biophysical Research Communications, 2017, 490, 608-615.	2.1	11
33	Autophagy of germ-granule components, PGL-1 and PGL-3, contributes to DNA damage-induced germ cell apoptosis in C. elegans. PLoS Genetics, 2019, 15, e1008150.	3.5	11
34	Two Mutations in pab-1 Encoding Poly(A)-Binding Protein Show Similar Defects in Germline Stem Cell Proliferation but Different Longevity in C. elegans. Molecules and Cells, 2010, 30, 167-172.	2.6	10
35	Caenorhabditis elegans as a powerful tool in natural product bioactivity research. Applied Biological Chemistry, 2022, 65, .	1.9	10
36	A novel mutation of the human 7-dehydrocholesterol reductase gene reduces enzyme activity in patients with holoprosencephaly. Biochemical and Biophysical Research Communications, 2004, 315, 219-223.	2.1	9

YHONG-HEE SHIM

#	Article	IF	CITATIONS
37	Gliadin intake induces oxidative-stress responses in Caenorhabditis elegans. Biochemical and Biophysical Research Communications, 2018, 503, 2139-2145.	2.1	9
38	Gliadin Intake Causes Disruption of the Intestinal Barrier and an Increase in Germ Cell Apoptosis in A Caenorhabditis Elegans Model. Nutrients, 2019, 11, 2587.	4.1	8
39	Long-Term Caffeine Intake Exerts Protective Effects on Intestinal Aging by Regulating Vitellogenesis and Mitochondrial Function in an Aged Caenorhabditis Elegans Model. Nutrients, 2021, 13, 2517.	4.1	7
40	Somatically expressed germ-granule components, PGL-1 and PGL-3, repress programmed cell death in C. elegans. Scientific Reports, 2016, 6, 33884.	3.3	6
41	Inhibition of Overexpressed CDC-25.1 Phosphatase Activity by Flavone in Caenorhabditis elegans. Molecules and Cells, 2009, 27, 345-350.	2.6	5
42	LIN-23, an E3 Ubiquitin Ligase Component, Is Required for the Repression of CDC-25.2 Activity during Intestinal Development in Caenorhabditis elegans. Molecules and Cells, 2016, 39, 834-840.	2.6	5
43	Proteomic Analysis of the Sterol-Mediated Signaling Pathway in Caenorhabditis elegans. Methods in Molecular Biology, 2009, 462, 1-15.	0.9	5
44	Depletion of <i>cdcâ€25.3</i> , a <i>CaenorhabditisÂelegans</i> orthologue of <i>cdc25</i> , increases physiological germline apoptosis. FEBS Letters, 2017, 591, 2131-2146.	2.8	4
45	Increased Stability of Nucleolar PinX1 in the Presence of TERT. Molecules and Cells, 2015, 38, 814-820.	2.6	4
46	3,3′-Diindolylmethane Supplementation Maintains Oocyte Quality by Reducing Oxidative Stress and CEP-1/p53-Mediated Regulation of Germ Cells in a Reproductively Aged Caenorhabditis elegans Model. Antioxidants, 2022, 11, 950.	5.1	3
47	Identification of cdc25 Gene in Pinewood Nematode, Bursaphelenchus xylophilus, and Its Function in Reproduction. Molecules and Cells, 2010, 29, 195-202.	2.6	2
48	<i>cdc-25.4</i> , a <i>Caenorhabditis elegans</i> Ortholog of <i>cdc25</i> , Is Required for Male Mating Behavior. G3: Genes, Genomes, Genetics, 2016, 6, 4127-4138.	1.8	2
49	cyb-1, a C. elegans B-type cyclin, maintains proper position and number of centrosomes during spermatogenesis. Journal of Cell Science, 2017, 130, 2722-2735.	2.0	2
50	cdc-25.2, a Caenorhabditis elegans ortholog of cdc25 , is required for male tail morphogenesis. Biochemical and Biophysical Research Communications, 2017, 482, 1213-1218.	2.1	1
51	Depletion of gipc-1 and gipc-2 causes infertility in Caenorhabditis elegans by reducing sperm motility. Biochemical and Biophysical Research Communications, 2021, 534, 219-225.	2.1	1
52	Loss of PGL-1 and PGL-3, members of a family of constitutive germ-granule components, promotes germline apoptosis in <i>C. elegans</i> . Development (Cambridge), 2016, 143, e1.2-e1.2.	2.5	0