Yhong-Hee Shim

List of Publications by Year

 in descending orderSource: https:/|exaly.com/author-pdf/6539791/publications.pdf
Version: 2024-02-01

28.9

340

DNA methyltransferase expression and DNA hypermethylation in human hepatocellular carcinoma.
Cancer Letters, 2006, 233, 271-278.
7.2

99

DNA methyltransferase expression and DNA methylation in human hepatocellular carcinoma and their clinicopathological correlation. International Journal of Molecular Medicine, 0, , .
$4.0 \quad 67$

Role of cholesterol in germ-line development ofCaenorhabditis elegans. Molecular Reproduction and Development, 2002, 61, 358-366.
2.0

Expression of DNA methyltransferases in multistep hepatocarcinogenesis. Human Pathology, 2003, 34,
2.0

11-17.

Anti-aging treatments slow propagation of synucleinopathy by restoring lysosomal function.
Autophagy, 2016, 12, 1849-1863.
9.1

Effects of Ginsenosides, Active Ingredients of Panax ginseng, on Development, Growth, and Life Span
7 of Caenorhabditis elegans. Biological and Pharmaceutical Bulletin, 2007, 30, 2126-2134.
1.4

39

8 Cholesterol-producing transgenic Caenorhabditis elegans lives longer due to newly acquired enhanced stress resistance. Biochemical and Biophysical Research Communications, 2005, 328, 929-936.
2.1

33

9 cdc-25.2, a C. elegans ortholog of $c d c 25$, is required to promote oocyte maturation. Journal of Cell
Science, 2010, 123, 993-1000. Caenorhabditis elegans. Molecules and Cells, 2015, 38, 236-242.

Relationships between the larval growth inhibition ofCaenorhabditis elegans by apigenin derivatives
and their structures. Archives of Pharmacal Research, 2006, 29, 582-586.

CDC-25.2, a<i>C. elegans</i>ortholog of <i>cdc25</i>, is essential for the progression of intestinal divisions. Cell Cycle, 2016, 15, 654-666.
2.6

21

CDC-25.1 controls the rate of germline mitotic cell cycle by counteracting WEE-1.3 and by positively regulating CDK-1 in<i>Caenorhabditis elegans</i>. Cell Cycle, 2012, 11, 1354-1363.
PAB-1, a Caenorhabditis elegans Poly(A)-Binding Protein, Regulates mRNA Metabolism in germline by
Interacting with CGH-1 and CAR-1. PLoS ONE, 2013, 8, e84798.

22 C. elegans: an invaluable model organism for the proteomics studies of the cholesterol-mediated signaling pathway. Expert Review of Proteomics, 2006, 3, 439-453.
$3.0 \quad 15$

23 \begin{tabular}{l}
Effects of Phosphoethanolamine Supplementation on Mitochondrial Activity and Lipogenesis in a

Caffeine Ingestion Caenorhabditis elegans Model. Nutrients, 2020, 12, 3348.

Cholesterol-Responsive Metabolic Proteins Are Required for Larval Development in Caenorhabditis

elegans. Molecules and Cells, 2013, 36, 410-416.
\end{tabular}

$4.1 \quad 15$

Mitochondrial Function in an Aged Caenorhabditis elegans Model. Antioxidants, 2021, 10, 519.
5.1

14

26 Caffeine Induces the Stress Response and Up-Regulates Heat Shock Proteins in Caenorhabditis elegans.
Molecules and Cells, 2016, 39, 163-168.
2.6

14
$27 \quad$ Proteomic Analysis of Caenorhabditis elegans. Methods in Molecular Biology, 2009, 519, 145-169.
0.9

13

28 Maternal Caffeine Intake Disrupts Eggshell Integrity and Retards Larval Development by Reducing Yolk
Production in a Caenorhabditis elegans Model. Nutrients, 2020, 12, 1334.
4.1
Inhibition of developmental processes by flavone in Caenorhabditis elegans and its application to the
pinewood nematode, Bursaphelenchus xylophilus. Molecules and Cells, 2008, 26, 171-4.
pinewood nematode, Bursaphelenchus xylophilus. Molecules and Cells, 2008, 26, 171-4.

Caffeine-induced food-avoidance behavior is mediated by neuroendocrine signals in Caenorhabditis elegans. BMB Reports, 2017, 50, 31-36.
2.4

12

Functional and phenotypic relevance of differentially expressed proteins in calcineurin mutants
2.2

11
Functional and phenotypic relevance of differentially expressed
ofCaenorhabditis elegans. Proteomics, 2006, 6, 1340-1350.

Transgenerational effects of proton beam irradiation on Caenorhabditis elegans germline apoptosis.
Biochemical and Biophysical Research Communications, 2017, 490, 608-615.
2.1

11

Autophagy of germ-granule components, PGL-1 and PCL-3, contributes to DNA damage-induced germ cell
apoptosis in C. elegans. PLoS Genetics, 2019, 15, e1008150.
3.5

11

Two Mutations in pab-1 Encoding Poly(A)-Binding Protein Show Similar Defects in Germline Stem Cell
Proliferation but Different Longevity in C. elegans. Molecules and Cells, 2010, 30, 167-172.
2.6

10

Caenorhabditis elegans as a powerful tool in natural product bioactivity research. Applied Biological
Chemistry, 2022, 65, .

Gliadin intake induces oxidative-stress responses in Caenorhabditis elegans. Biochemical and
Biophysical Research Communications, 2018, 503, 2139-2145.
Gliadin Intake Causes Disruption of the Intestinal Barrier and an Increase in Germ Cell Apoptosis in A Caenorhabditis Elegans Model. Nutrients, 2019, 11, 2587.

Long-Term Caffeine Intake Exerts Protective Effects on Intestinal Aging by Regulating Vitellogenesis
and Mitochondrial Function in an Aged Caenorhabditis Elegans Model. Nutrients, 2021, 13, 2517.
$4.1 \quad 7$

Somatically expressed germ-granule components, PGL-1 and PGL-3, repress programmed cell death in C.
elegans. Scientific Reports, 2016, 6, 33884.
3.3

6

Inhibition of Overexpressed CDC-25.1 Phosphatase Activity by Flavone in Caenorhabditis elegans.
Molecules and Cells, 2009, 27, 345-350.
2.65

LIN-23, an E3 Ubiquitin Ligase Component, Is Required for the Repression of CDC-25.2 Activity during
Intestinal Development in Caenorhabditis elegans. Molecules and Cells, 2016, 39, 834-840.
2.6

5
Proteomic Analysis of the Sterol-Mediated Signaling Pathway in Caenorhabditis elegans. Methods in

Molecular Biology, 2009, 462, 1-15. | Depletion of <i>cdcâ $£ 25.3</ \mathrm{i}\rangle$, a <i>CaenorhabditisÂelegans</i> orthologue of <i>cdc $25</ \mathrm{i}\rangle$, increases |
| :--- |
| physiological germline apoptosis. FEBS Letters, 2017, 591, 2131-2146. |

45 Increased Stability of Nucleolar PinX1 in the Presence of TERT. Molecules and Cells, 2015, 38, 814-820.

46 | 3,3̂̂́ 2 -Diindolylmethane Supplementation Maintains Oocyte Quality by Reducing Oxidative Stress and |
| :--- |
| CEP-1/p53-Mediated Regulation of Germ Cells in a Reproductively Aged Caenorhabditis elegans Model. |
| Antioxidants, 2022, 11, 950. |

<i>cdc-25.4</i>, a<i>Caenorhabditis elegans</i>Ortholog of $\langle\mathrm{i}\rangle \mathrm{cdc} 25</ \mathrm{i}\rangle$, Is Required for Male Mating
Behavior. G3: Genes, Genomes, Genetics, 2016, 6, 4127-4138.
1.8

2
cyb-1, a C. elegans B-type cyclin, maintains proper position and number of centrosomes during
2.0

2
spermatogenesis. Journal of Cell Science, 2017, 130, 2722-2735.
cdc-25.2, a Caenorhabditis elegans ortholog of cdc25, is required for male tail morphogenesis.
Biochemical and Biophysical Research Communications, 2017, 482, 1213-1218.
2.1

1

Depletion of gipc-1 and gipc-2 causes infertility in Caenorhabditis elegans by reducing sperm motility.
51 Depletion of gipc-1 and gipc-2 causes infertiity in Caenornabaitis elegans by red Biochemical and Biophysical Research Communications, 2021, 534, 219-225.
2.1

1

