Isabel R Schlaepfer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6539563/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Raman Microscopy Techniques to Study Lipid Droplet Composition in Cancer Cells. Methods in Molecular Biology, 2022, 2413, 193-209.	0.9	0
2	Editorial: The Role of Steroid Hormones and Growth Factors in Cancer. Frontiers in Cell and Developmental Biology, 2022, 10, 887529.	3.7	1
3	BRAF Modulates Lipid Use and Accumulation. Cancers, 2022, 14, 2110.	3.7	3
4	Lipid profiling using Raman and a modified support vector machine algorithm. Journal of Raman Spectroscopy, 2021, 52, 1910.	2.5	1
5	Light-Responsive Polymeric Micellar Nanoparticles with Enhanced Formulation Stability. Polymers, 2021, 13, 377.	4.5	18
6	Carnitine Palmitoyltransferase 1 Regulates Prostate Cancer Growth under Hypoxia. Cancers, 2021, 13, 6302.	3.7	12
7	CPT1A-mediated Fat Oxidation, Mechanisms, and Therapeutic Potential. Endocrinology, 2020, 161, .	2.8	296
8	Overcoming Resistance to Therapies Targeting the MAPK Pathway in BRAF-Mutated Tumours. Journal of Oncology, 2020, 2020, 1-14.	1.3	14
9	CPT1A Over-Expression Increases Reactive Oxygen Species in the Mitochondria and Promotes Antioxidant Defenses in Prostate Cancer. Cancers, 2020, 12, 3431.	3.7	21
10	Targeting Fat Oxidation in Mouse Prostate Cancer Decreases Tumor Growth and Stimulates Anti-Cancer Immunity. International Journal of Molecular Sciences, 2020, 21, 9660.	4.1	8
11	Targeting Fatty Acid Oxidation to Promote Anoikis and Inhibit Ovarian Cancer Progression. Molecular Cancer Research, 2020, 18, 1088-1098.	3.4	71
12	Abstract 5029: Targeting fatty acid oxidation to promote anoikis and inhibit ovarian cancer progression. , 2020, , .		0
13	Abstract 6387: Therapeutic targeting of lipid oxidation and apoptosis in pancreatic ductal adenocarcinoma. , 2020, , .		0
14	CPT1A Supports Castration-Resistant Prostate Cancer in Androgen-Deprived Conditions. Cells, 2019, 8, 1115.	4.1	23
15	Lipid Metabolism and Endocrine Resistance in Prostate Cancer, and New Opportunities for Therapy. International Journal of Molecular Sciences, 2019, 20, 2626.	4.1	80
16	Statistical multivariate analysis of biomarkers for circulating tumor cell detection (Conference) Tj ETQq0 0 0 rgB1	[/Overlocl	₹ 10 Tf 50 14
17	OR34-4 ATF3 Is A Converging Point For AR Signaling And Fatty Acid Oxidation In Prostate Cancer. Journal of the Endocrine Society, 2019, 3, .	0.2	0

18	Pilot study to enhance FDG-PET imaging of prostate cancers with the metabolic inhibitor ranolazine Journal of Clinical Oncology, 2019, 37, e16551-e16551.	1.6	0

ISABEL R SCHLAEPFER

#	Article	IF	CITATIONS
19	Exosomes secreted by placental stem cells selectively inhibit growth of aggressive prostate cancer cells. Biochemical and Biophysical Research Communications, 2018, 499, 1004-1010.	2.1	27
20	RTN4 Knockdown Dysregulates the AKT Pathway, Destabilizes the Cytoskeleton, and Enhances Paclitaxel-Induced Cytotoxicity in Cancers. Molecular Therapy, 2018, 26, 2019-2033.	8.2	29
21	A novel approach to target hypoxic cancer cells via combining β-oxidation inhibitor etomoxir with radiation. Hypoxia (Auckland, N Z), 2018, Volume 6, 23-33.	1.9	33
22	MP81-14 EXOSOMES SECRETED BY PLACENTAL STEM CELLS SELECTIVELY INHIBIT GROWTH OF PROSTATE CANCER CELLS. Journal of Urology, 2018, 199, .	0.4	0
23	Abstract A021: CPT1A-mediated fat oxidation and its role in the immune response to prostate cancer. , 2018, , .		1
24	ATG14 facilitated lipophagy in cancer cells induce ER stress mediated mitoptosis through a ROS dependent pathway. Free Radical Biology and Medicine, 2017, 104, 199-213.	2.9	60
25	Statistical performance of image cytometry for DNA, lipids, cytokeratin, & CD45 in a model system for circulation tumor cell detection. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2017, 91, 662-674.	1.5	0
26	The Antineoplastic Activity of Photothermal Ablative Therapy with Targeted Gold Nanorods in an Orthotopic Urinary Bladder Cancer Model. Bladder Cancer, 2017, 3, 201-210.	0.4	12
27	Lipid catabolism inhibition sensitizes prostate cancer cells to antiandrogen blockade. Oncotarget, 2017, 8, 56051-56065.	1.8	70
28	Aberrant Lipid Metabolism Promotes Prostate Cancer: Role in Cell Survival under Hypoxia and Extracellular Vesicles Biogenesis. International Journal of Molecular Sciences, 2016, 17, 1061.	4.1	77
29	Abstract 1055: CPT1A-mediated lipid catabolism modulates growth, AR expression and hypoxia survival of prostate cancer. , 2016, , .		0
30	Inhibition of Lipid Oxidation Increases Glucose Metabolism and Enhances 2-Deoxy-2-[18F]Fluoro-d-Glucose Uptake in Prostate Cancer Mouse Xenografts. Molecular Imaging and Biology, 2015, 17, 529-538.	2.6	54
31	Hypoxia induces triglycerides accumulation in prostate cancer cells and extracellular vesicles supporting growth and invasiveness following reoxygenation. Oncotarget, 2015, 6, 22836-22856.	1.8	85
32	Abstract 1483: Lipid oxidation via CPT1 as a target for prostate cancer imaging and therapy. , 2015, , .		0
33	Raman and coherent anti-Stokes Raman scattering microscopy studies of changes in lipid content and composition in hormone-treated breast and prostate cancer cells. Journal of Biomedical Optics, 2014, 19, 111605.	2.6	50
34	Micro-Raman spectroscopy studies of changes in lipid composition in breast and prostate cancer cells treated with MPA and R1881 hormones. , 2014, , .		0
35	Lipid Catabolism via CPT1 as a Therapeutic Target for Prostate Cancer. Molecular Cancer Therapeutics, 2014, 13, 2361-2371.	4.1	233
36	Abstract 107: Lipid metabolism inhibitors enhance glycolysis and FDG-PET imaging of prostate cancer tumors. , 2014, , .		0

3

ISABEL R SCHLAEPFER

#	Article	IF	CITATIONS
37	Progestin modulates the lipid profile and sensitivity of breast cancer cells to docetaxel. Molecular and Cellular Endocrinology, 2012, 363, 111-121.	3.2	60
38	Externalizing Behaviors are Associated with SNPs in the CHRNA5/CHRNA3/CHRNB4 Gene Cluster. Behavior Genetics, 2012, 42, 402-414.	2.1	28
39	Fatty acids increase glucose uptake and metabolism in C2C12 myoblasts stably transfected with human lipoprotein lipase. American Journal of Physiology - Endocrinology and Metabolism, 2010, 299, E576-E583.	3.5	3
40	Genetic Association of the CHRNA6 and CHRNB3 Genes with Tobacco Dependence in a Nationally Representative Sample. Neuropsychopharmacology, 2009, 34, 698-706.	5.4	90
41	The CHRNA5/A3/B4 Gene Cluster Variability as an Important Determinant of Early Alcohol and Tobacco Initiation in Young Adults. Biological Psychiatry, 2008, 63, 1039-1046.	1.3	174
42	The Genetic Components of Alcohol and Nicotine Co-Addiction: From Genes to Behavior. Current Drug Abuse Reviews, 2008, 1, 124-134.	3.4	75
43	The neuronal nicotinic receptor subunit genes (CHRNA6 and CHRNB3) are associated with subjective responses to tobacco. Human Molecular Genetics, 2007, 17, 724-734.	2.9	88
44	Association of the neuronal nicotinic receptor β2 subunit gene (CHRNB2) with subjective responses to alcohol and nicotine. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2007, 144B, 596-604.	1.7	108
45	The human protein kinase C gamma gene (PRKCG) as a susceptibility locus for behavioral disinhibition. Addiction Biology, 2007, 12, 200-209.	2.6	15
46	Cloning and characterization of Munc18c(L), a novel murine Munc18c gene paralog. Biochemical and Biophysical Research Communications, 2005, 334, 911-916.	2.1	1
47	Increased expression of the SNARE accessory protein Munc18c in lipid-mediated insulin resistance. Journal of Lipid Research, 2003, 44, 1174-1181.	4.2	23
48	Increased Intracellular Triglyceride in C2C12 Muscle Cells Transfected with Human Lipoprotein Lipase. Biochemical and Biophysical Research Communications, 2000, 270, 997-1001.	2.1	11
49	Plasma triglyceride reduction in mice after direct injections of muscle-specific lipoprotein lipase DNA. Diabetes, 1999, 48, 223-227.	0.6	16
50	Prevention of diet-induced obesity in transgenic mice overexpressing skeletal muscle lipoprotein lipase. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1997, 273, R683-R689.	1.8	67
51	Tissue-specific regulation of lipoprotein lipase by isoproterenol in normal-weight humans. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1996, 271, R1280-R1286.	1.8	11
52	Tumor necrosis factor-alpha eliminates binding of NF-Y and an octamer-binding protein to the lipoprotein lipase promoter in 3T3-L1 adipocytes Journal of Clinical Investigation, 1995, 95, 1684-1689.	8.2	59
53	VI. Yeast sequencing reports. The sequence and potential regulatory elements of theHEM2 promoter ofSaccharomyces cerevisiae. Yeast, 1994, 10, 227-229.	1.7	7