Kiyonori Suzuki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6539438/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nanocrystalline (Fe,Co,Ni)86B14 soft magnetic alloys prepared by ultra-rapid annealing. Journal of Alloys and Compounds, 2022, 902, 162544.	2.8	8
2	Unraveling the magnetic softness in Fe–Ni–B-based nanocrystalline material by magnetic small-angle neutron scattering. IUCrJ, 2022, 9, 65-72.	1.0	5
3	Nanocrystalline soft magnetic materials produced by continuous ultra-rapid annealing (CURA). AIP Advances, 2022, 12, .	0.6	6
4	Soft magnetic performance of ultra-rapidly annealed high-Bs Fe-(Co)-B nanocrystalline alloys at elevated temperatures. Journal of Alloys and Compounds, 2022, 911, 165033.	2.8	11
5	Role of magnetostriction on power losses in nanocrystalline soft magnets. NPG Asia Materials, 2022, 14, .	3.8	7
6	Uniaxial polarization analysis of bulk ferromagnets: theory and first experimental results. Journal of Applied Crystallography, 2022, 55, 569-585.	1.9	2
7	Prediction of density in amorphous and nanocrystalline soft magnetic alloys: A data mining approach. Journal of Alloys and Compounds, 2021, 859, 157845.	2.8	16
8	Colossal Magnetization and Giant Coercivity in Ion-Implanted (Nb and Co) MoS ₂ Crystals. ACS Applied Materials & Interfaces, 2020, 12, 58140-58148.	4.0	22
9	Performance evaluation of CuBTC composites for room temperature oxygen storage. RSC Advances, 2020, 10, 40960-40968.	1.7	7
10	Engineered Porous Nanocomposites That Deliver Remarkably Low Carbon Capture Energy Costs. Cell Reports Physical Science, 2020, 1, 100070.	2.8	26
11	Experimental observation of third-order effect in magnetic small-angle neutron scattering. Physical Review B, 2020, 101, .	1.1	5
12	Effect of direct-current magnetic field on the specific absorption rate of metamagnetic CoMnSi: A potential approach to switchable hyperthermia therapy. AIP Advances, 2020, 10, 015128.	0.6	6
13	Dramatic grain refinement and magnetic softening induced by Ni addition in Fe B based nanocrystalline soft magnetic alloys. Scripta Materialia, 2020, 181, 82-85.	2.6	21
14	Effect of latent heat during primary crystallization on the nanostructural formation process in nanocrystalline soft magnetic materials. AIP Advances, 2020, 10, .	0.6	4
15	Nanostructural formation kinetics in an <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Fe</mml:mi><mml:m mathvariant="normal">B<mml:mn>14</mml:mn></mml:m </mml:msub></mml:mrow> soft magnetic alloy investigated by <i>in situ</i></mml:math 	n>860.9	ml:mn>3
16	Mysical Review Materials, 2020, 4, . Magnetic Guinier law. IUCrJ, 2020, 7, 136-142.	1.0	5
17	Continuous Flow Synthesis of a Zr Magnetic Framework Composite for Post ombustion CO ₂ Capture. Chemistry - A European Journal, 2019, 25, 13184-13188.	1.7	27
18	Confinement-Induced Giant Spin–Orbit-Coupled Magnetic Moment of Co Nanoclusters in TiO ₂ Films. ACS Applied Materials & Interfaces, 2019, 11, 43781-43788.	4.0	8

Kiyonori Suzuki

#	Article	IF	CITATIONS
19	Efficient delivery of oxygen <i>via</i> magnetic framework composites. Journal of Materials Chemistry A, 2019, 7, 3790-3796.	5.2	15
20	Nanocrystalline soft magnetic materials with a saturation magnetization greater than 2â€T. Journal of Magnetism and Magnetic Materials, 2019, 485, 180-186.	1.0	47
21	Nanocrystalline soft magnetic materials from binary alloy precursors with high saturation magnetization. AIP Advances, 2019, 9, .	0.6	36
22	Bifunctional Fe3O4@AuNWs particle as wearable bending and strain sensor. Inorganic Chemistry Communication, 2019, 104, 98-104.	1.8	19
23	Core loss of ultra-rapidly annealed Fe-rich nanocrystalline soft magnetic alloys. Journal of Magnetism and Magnetic Materials, 2019, 476, 142-148.	1.0	33
24	Magnetic Framework Composites for Low Concentration Methane Capture. Industrial & Engineering Chemistry Research, 2018, 57, 6040-6047.	1.8	17
25	Towards energy efficient separations with metal organic frameworks. Chemical Communications, 2018, 54, 2825-2837.	2.2	25
26	Low temperature texture development in Nd2Fe14B/ <i>α</i> -Fe nanocomposite magnets via equal channel angular pressing. AIP Advances, 2018, 8, .	0.6	2
27	Nano-crystallization of amorphous alloys by ultra-rapid annealing: An effective approach to magnetic softening. Journal of Alloys and Compounds, 2018, 735, 613-618.	2.8	45
28	Estimation of volume-weighted average grain size in Fe-based nanocrystalline soft magnetic materials by autocorrelation function. Materials Characterization, 2018, 142, 577-583.	1.9	7
29	Nano-crystallisation and magnetic softening in Fe–B binary alloys induced by ultra-rapid heating. Journal Physics D: Applied Physics, 2018, 51, 415001.	1.3	21
30	Intrinsic or Interface Clustering-Induced Ferromagnetism in Fe-Doped In ₂ O ₃ -Diluted Magnetic Semiconductors. ACS Applied Materials & Interfaces, 2018, 10, 22372-22380.	4.0	23
31	Defects engineering induced room temperature ferromagnetism in transition metal doped MoS 2. Materials and Design, 2017, 121, 77-84.	3.3	97
32	Copper-free nanocrystalline soft magnetic materials with high saturation magnetization comparable to that of Si steel. Applied Physics Letters, 2017, 110, .	1.5	81
33	Effect of heating rate during primary crystallization on soft magnetic properties of melt-spun Fe-B alloys. Scripta Materialia, 2017, 132, 68-72.	2.6	75
34	Fe ₃ O ₄ @HKUST-1 and Pd/Fe ₃ O ₄ @HKUST-1 as magnetically recyclable catalysts prepared via conversion from a Cu-based ceramic. CrystEngComm, 2017, 19, 4201-4210.	1.3	28
35	Magnetic Induction Framework Synthesis: A General Route to the Controlled Growth of Metal–Organic Frameworks. Chemistry of Materials, 2017, 29, 6186-6190.	3.2	34
36	Spin Structures of Textured and Isotropic Nd-Fe-B-Based Nanocomposites: Evidence for Correlated Crystallographic and Spin Textures. Physical Review Applied, 2017, 7, .	1.5	12

#	Article	IF	CITATIONS
37	Inducing High Coercivity in MoS ₂ Nanosheets by Transition Element Doping. Chemistry of Materials, 2017, 29, 9066-9074.	3.2	81
38	Intrinsic and spatially nonuniform ferromagnetism in Co-doped ZnO films. Physical Review B, 2017, 96, .	1.1	25
39	A Gallium-Based Magnetocaloric Liquid Metal Ferrofluid. Nano Letters, 2017, 17, 7831-7838.	4.5	101
40	Soft magnetic properties of rapidly-annealed nanocrystalline Fe-Nb-B-(Cu) alloys. Journal of Alloys and Compounds, 2017, 723, 408-417.	2.8	53
41	Effect of Si on the field-induced anisotropy in Fe-rich nanocrystalline soft magnetic alloys. Journal of Alloys and Compounds, 2017, 695, 3156-3162.	2.8	33
42	The effect of Cu-based core-sheath configurations on the processing of Nd-Fe-B-based permanent magnets via equal-channel angular pressing. IOP Conference Series: Materials Science and Engineering, 2017, 194, 012043.	0.3	1
43	Magnetic Metal–Organic Frameworks for Efficient Carbon Dioxide Capture and Remote Trigger Release. Advanced Materials, 2016, 28, 1839-1844.	11.1	107
44	Fabrication, characterization and magnetic properties of Na-doped ZnO nanorods. Functional Materials Letters, 2016, 09, 1650039.	0.7	4
45	Magnetic Induction Swing Adsorption: An Energy Efficient Route to Porous Adsorbent Regeneration. Chemistry of Materials, 2016, 28, 6219-6226.	3.2	59
46	MaLISA – a cooperative method to release adsorbed gases from metal–organic frameworks. Journal of Materials Chemistry A, 2016, 4, 18757-18762.	5.2	46
47	Effect of Processing Parameters on the Magnetic Properties and Macrotexture of a Nd _{13.5} Fe _{73.8} Co _{6.7} B _{5.6} Ca _{0.4} Alloy Processed by Equal Channel Angular Pressing With Back Pressure. IEEE Transactions on Magnetics, 2016, 52, 1-4.	1.2	2
48	Magnetic Fe-Co films electroplated in a deep-eutectic-solvent-based plating bath. Journal of Applied Physics, 2015, 117, 17A925.	1.1	10
49	Ferromagnetism and Crossover of Positive Magnetoresistance to Negative Magnetoresistance in Na-Doped ZnO. Chemistry of Materials, 2015, 27, 1285-1291.	3.2	37
50	Induced magnetic anisotropy in Si-free nanocrystalline soft magnetic materials: A transmission x-ray diffraction study. Journal of Applied Physics, 2015, 117, 17A333.	1.1	7
51	Improvement in current efficiency of electroplated Fe-Ni films prepared in citric-acid-based baths. Journal of Applied Physics, 2015, 117, 17A326.	1.1	10
52	Microstructural and magnetic properties of Nd-Fe-B alloys processed by equal-channel angular pressing. Journal of Applied Physics, 2015, 117, .	1.1	7
53	Fe-Pt thick-film magnets prepared by electroplating method. Journal of Applied Physics, 2015, 117, .	1.1	13
54	Lead(<scp>ii</scp>) uptake by aluminium based magnetic framework composites (MFCs) in water. Journal of Materials Chemistry A, 2015, 3, 19822-19831.	5.2	141

#	Article	IF	CITATIONS
55	Effect of current density on magnetic properties of electrodeposited Fe-Ni films prepared in a citric-acid-based-bath. Journal of Applied Physics, 2014, 115, 17A325.	1.1	10
56	Extraordinary induction heating effect near the first order Curie transition. Applied Physics Letters, 2014, 105, .	1.5	19
57	Electrodeposited Fe–Ni Films Prepared in a Citric-Acid-Based Bath with Different pH Values. IEEE Transactions on Magnetics, 2014, 50, 1-3.	1.2	5
58	Electroplated Fe–Ni Films Prepared From Deep Eutectic Solvents. IEEE Transactions on Magnetics, 2014, 50, 1-4.	1.2	10
59	Particle size dependence of heating power in MgFe2O4 nanoparticles for hyperthermia therapy application. Journal of Applied Physics, 2014, 115, .	1.1	32
60	Low-temperature phase MnBi compound: A potential candidate for rare-earth free permanent magnets. Journal of Alloys and Compounds, 2014, 615, S285-S290.	2.8	57
61	Electroplated Fe films prepared from a deep eutectic solvent. Journal of Applied Physics, 2014, 115, 17A344.	1.1	13
62	Magnetization reversal in Nd-Fe-B based nanocomposites as seen by magnetic small-angle neutron scattering. Applied Physics Letters, 2013, 102, 022415.	1.5	29
63	Electrodeposited Fe-Ni films prepared from a tartaric-acid-based bath. Journal of the Korean Physical Society, 2013, 62, 1963-1965.	0.3	5
64	Electrodeposited Fe-Co films prepared from a citric-acid-based plating bath. Journal of the Korean Physical Society, 2013, 62, 1966-1968.	0.3	8
65	Evidence of Oxygen Vacancy Mediated Room-Temperature-Ferromagnetism in Co-Doped ZnO Films Upon Hydrogen Treatment. Integrated Ferroelectrics, 2013, 144, 1-8.	0.3	6
66	New \${m T}_{m c}\$-Tuned Manganese Ferrite-Based Magnetic Implant for Hyperthermia Therapy Application. IEEE Transactions on Magnetics, 2013, 49, 3460-3463.	1.2	16
67	A two-step process for preparation of dodecanethiol-capped Au nanoparticles with room-temperature spontaneous magnetization. New Journal of Chemistry, 2013, 37, 2628.	1.4	3
68	Exchange-stiffness constant of a Nd-Fe-B based nanocomposite determined by magnetic neutron scattering. Applied Physics Letters, 2013, 103, .	1.5	17
69	Magnetoelastic coupling and competing entropy changes in substituted CoMnSi metamagnets. Physical Review B, 2013, 87, .	1.1	36
70	Fast Deswelling of Nanocomposite Polymer Hydrogels via Magnetic Field-Induced Heating for Emerging FO Desalination. Environmental Science & Technology, 2013, 47, 6297-6305.	4.6	82
71	Analysis of magnetic neutron-scattering data of two-phase ferromagnets. Physical Review B, 2013, 88, .	1.1	17
72	Nonylphenol polyethoxylate coated body-center-cubic iron nanocrystals for ferrofluids with technical applications. Journal of Applied Physics, 2013, 113, .	1.1	10

Kiyonori Suzuki

#	Article	IF	CITATIONS
73	Spin reorientation transition and hard magnetic properties of MnBi intermetallic compound. Journal of Applied Physics, 2012, 111, .	1.1	16
74	Room temperature spontaneous magnetization in calcined trioctylphosphine-ZnO nanoparticles. Journal of Applied Physics, 2012, 111, .	1.1	10
75	Nanometer Size Effect on Structural and Magnetic Properties of La0.2Ca0.8MnO3. Journal of Nanoscience and Nanotechnology, 2012, 12, 8607-8612.	0.9	3
76	Soft Magnetic Properties of Electrodeposited Fe-Ni Films Prepared in Citric Acid Based Bath. IEEE Transactions on Magnetics, 2012, 48, 2907-2909.	1.2	28
77	The use of plasma treatment for simultaneous carbonization and reduction of iron oxide/polypyrrole core/shell nanoparticles. Journal of Nanoparticle Research, 2012, 14, 1.	0.8	8
78	Room-temperature spontaneous magnetization in a nanostructured TiO2–Al system prepared by ball-milling. Journal of Alloys and Compounds, 2012, 536, S287-S290.	2.8	5
79	Magnetic properties of electron-doped La0.23Ca0.77MnO3 nanoparticles. Journal of Nanoparticle Research, 2012, 14, 1.	0.8	12
80	Phase reduction of coated maghemite (γ-Fe ₂ O ₃) nanoparticles under microwave-induced plasma heating for rapid heat treatment. Journal of Materials Chemistry, 2012, 22, 617-625.	6.7	36
81	Magnetic-field-induced anisotropies and exchange softening in Fe-rich nanocrystalline soft magnetic alloys. Scripta Materialia, 2012, 67, 548-553.	2.6	92
82	Surface Charge Transfer Induced Ferromagnetism in Nanostructured ZnO/Al. Journal of Physical Chemistry C, 2012, 116, 8541-8547.	1.5	15
83	Observation of cross-shaped anisotropy in spin-resolved small-angle neutron scattering. Physical Review B, 2012, 85, .	1.1	11
84	Charge-transfer induced ferromagnetism in nanostructured ZnO/Al powders: An x-ray absorption near edge structure study. Journal of Applied Physics, 2012, 111, 07C313.	1.1	2
85	Ferromagnetism of polythiophene-capped Au nanoparticles. Journal of Applied Physics, 2011, 109, .	1.1	6
86	Exchange Bias Effect in La _{0.2} Ca _{0.8} MnO ₃ Antiferromagnetic Nanoparticles with Two Ferromagnetic-Like Contributions. Journal of Physical Chemistry C, 2011, 115, 1582-1591.	1.5	27
87	Comparative Study of the Magnetic Behavior of Spherical and Cubic Superparamagnetic Iron Oxide Nanoparticles. Journal of Physical Chemistry C, 2011, 115, 327-334.	1.5	119
88	Small-angle Neutron Scattering with One-dimensional Polarization Analysis. Neutron News, 2011, 22, 15-19.	0.1	7
89	Synthesis and electromagnetic interference shielding properties of iron oxide/polypyrrole nanocomposites. Polymer Engineering and Science, 2011, 51, 247-253.	1.5	67
90	Longitudinal polarization analysis in small-angle neutron scattering. European Physical Journal B, 2010, 76, 209-213	0.6	37

#	Article	IF	CITATIONS
91	Effect of Electrical Current on Magnetic and Transport Properties of Single-Crystalline La\$_{0.82}\$Ca\$_{0.18}\$MnO\$_{3}\$. IEEE Transactions on Magnetics, 2010, 46, 1705-1707.	1.2	1
92	Hydrogen permeation behavior of multifilamentary Cu–Nb superconducting composites. Scripta Materialia, 2010, 62, 582-585.	2.6	3
93	The Effects of Cryogenic Milling and Catalytic Additives on the Hydrogen Desorption Behaviour of Nanostructured MgH ₂ . Materials Science Forum, 2010, 654-656, 2847-2850.	0.3	1
94	Effect of Organic Capping on the Magnetic Properties of Au Nanoparticles. Materials Science Forum, 2010, 654-656, 1174-1177.	0.3	0
95	Raman Scattering Studies in Oxygen-Vacancy Induced Ferromagnetism of Co-Doped ZnO Films. Materials Science Forum, 2010, 654-656, 1844-1847.	0.3	2
96	Modelling the Crystallization Reactions of Amorphous Precursors in Fe ₃ B/Nd ₂ Fe ₁₄ B Nanocomposite Magnets. Materials Science Forum, 2010, 654-656, 1166-1169.	0.3	1
97	Magnetic and structural characterization of thiol capped ferromagnetic Ag nanoparticles. Journal of Applied Physics, 2010, 107, .	1.1	13
98	Effect of boron on the field-induced magnetic anisotropy in Fe-based soft magnetic nanostructures. Journal of Applied Physics, 2009, 105, .	1.1	10
99	Anin situneutron diffraction study of magnetic hardening in Fe3B/Nd2Fe14B nanocomposite magnets induced by rapid thermal annealing. Journal of Applied Physics, 2009, 105, 07A735.	1.1	6
100	Thiol-capped ferromagnetic Au nanoparticles investigated by Au L3 x-ray absorption spectroscopy. Journal of Applied Physics, 2009, 105, 07A907.	1.1	13
101	Room temperature ferromagnetism in nanostructured ZnO–Al system. Applied Physics Letters, 2009, 95, 172507.	1.5	35
102	Processing of Iron Oxide Nanoparticles by Supercritical Fluids. Industrial & Engineering Chemistry Research, 2008, 47, 599-614.	1.8	108
103	Chemically Induced Permanent Magnetism in Au, Ag, and Cu Nanoparticles:  Localization of the Magnetism by Element Selective Techniques. Nano Letters, 2008, 8, 661-667.	4.5	220
104	Local random magnetocrystalline and macroscopic induced anisotropies in magnetic nanostructures. Journal of Non-Crystalline Solids, 2008, 354, 5089-5092.	1.5	55
105	Magnetic domains and annealing-induced magnetic anisotropy in nanocrystalline soft magnetic materials. Journal of Applied Physics, 2008, 103, .	1.1	34
106	Thermal expansion of Fe-TM-B (TM=transition metal) bulk amorphous forming alloys. Journal of Applied Physics, 2008, 103, .	1.1	4
107	Exchange interactions in hydrogen-induced amorphous YFe2. Journal of Non-Crystalline Solids, 2007, 353, 748-752.	1.5	7
108	Production of magnetic microspheres by ultrasonic atomisation. Journal of Magnetism and Magnetic Materials, 2007, 311, 97-100.	1.0	9

#	Article	IF	CITATIONS
109	Temperature dependence of dipole-field scattering in Nanoperm. Journal of Magnetism and Magnetic Materials, 2007, 316, 448-450.	1.0	0
110	Effect of magnetic field annealing on the soft magnetic properties of nanocrystalline materials. Journal of Magnetism and Magnetic Materials, 2007, 316, 458-461.	1.0	27
111	Mössbauer study of the crystallization products of a Fe75Zr25 amorphous alloy. Hyperfine Interactions, 2007, 165, 161-165.	0.2	2
112	Dipolar correlations in a nanocomposite: A neutron scattering study of NanopermFe89Zr7B3Cu. Physical Review B, 2006, 74, .	1.1	28
113	Small angle neutron scattering investigations of spin disorder in nanocomposite soft magnets. Journal of Alloys and Compounds, 2006, 423, 31-36.	2.8	1
114	Grain growth process of two-phase nanocrystalline soft magnetic materials. Journal of Magnetism and Magnetic Materials, 2006, 304, e693-e696.	1.0	2
115	Soft magnetic properties of nanocrystalline (, 12 and 14) alloys annealed in a rotating magnetic field. Journal of Magnetism and Magnetic Materials, 2006, 304, e639-e641.	1.0	0
116	Processing and Modeling of Novel Nanocrystalline Soft Magnetic Materials. , 2006, , 339-373.		1
117	Soft Magnetic Nanostructures and Applications. , 2006, , 365-401.		42
118	High saturation magnetization and soft magnetic properties of nanocrystalline (Fe,Co)90Zr7B3 alloys annealed under a rotating magnetic field. Journal of Applied Physics, 2006, 99, 08F114.	1.1	38
119	Magnetic hardening in Fe3Bâ^•Nd2Fe14B nanocomposite magnets induced by rapid thermal annealing. Journal of Applied Physics, 2006, 99, 08B505.	1.1	4
120	Mössbauer study of the crystallization products of a Fe75Zr25 amorphous alloy. , 2006, , 161-165.		0
121	Dipole-field–induced spin disorder in a nanocomposite soft magnet. Europhysics Letters, 2005, 72, 249-255.	0.7	13
122	Improvement of magnetic softness in nanocrystalline soft magnetic materials by rotating magnetic field annealing. Journal of Applied Physics, 2005, 97, 10F503.	1.1	11
123	Pressure effects on the magnetic and transport properties ofPr1â^'xSrxMnO3crystals near the percolation threshold. Physical Review B, 2005, 71, .	1.1	36
124	Neutron scattering and modeling of dipole-field-induced spin disorder in Nanoperm. Applied Physics Letters, 2005, 87, 202509.	1.5	10
125	Fe-M-B (M = IVa TO VIa Metal) Nanocrystalline Soft Magnetic Materials. , 2005, , 1-14.		2
126	Decomposition behaviour of amorphous Fe89ÂxZr7B3Cu1Gexalloys. Journal Physics D: Applied Physics, 2004, 37, 645-652.	1.3	7

#	Article	IF	CITATIONS
127	Effect of intergranular magnetic coupling on soft magnetic and magnetotransport properties in nanocrystalline materials. Scripta Materialia, 2003, 48, 875-880.	2.6	11
128	Soft magnetic properties of Ge-doped nanocrystalline Fe–Zr–B alloys. Journal of Magnetism and Magnetic Materials, 2003, 254-255, 441-443.	1.0	9
129	Hydrogen absorption of C14 Laves NiTiZr-NiVNb pseudo-binary alloys. Materials Research Society Symposia Proceedings, 2003, 801, 102.	0.1	Ο
130	Magnetic properties of hydrogen-induced amorphous YFe2. Journal of Applied Physics, 2003, 93, 7658-7660.	1.1	6
131	Noncollinearity of the magnetic structure of TbFe10V2. Journal of Applied Physics, 2003, 93, 6972-6974.	1.1	2
132	Emergence of Hydrogen Absorption Ability in Metastable HCP, FCC and Amorphous Ti-Al Alloys Prepared by Mechanical Grinding. Materials Transactions, 2002, 43, 2734-2740.	0.4	8
133	A Small Angle Polarized Neutron Scattering Investigation of Magnetic Correlations in Nanocrystalline Fe89Zr7B3Cu1. Materials Research Society Symposia Proceedings, 2002, 746, 1.	0.1	0
134	Effect of Co or Ge doping on the intergranular magnetic coupling in nanocrystalline Fe[sub 89]Zr[sub 7]B[sub 3]Cu[sub 1]. Journal of Applied Physics, 2002, 91, 8417.	1.1	30
135	Magnetic, transport, and electron magnetic resonance properties ofLa0.82Ca0.18MnO3single crystals. Physical Review B, 2002, 65, .	1.1	67
136	Hydrogen absorption properties of Ti3Al-based ternary alloys. Journal of Alloys and Compounds, 2002, 330-332, 543-546.	2.8	6
137	Thermal analysis of hydrogen-induced amorphization in C15 Laves RFe2 compounds. Journal of Alloys and Compounds, 2002, 330-332, 743-746.	2.8	14
138	Hydrogen absorption and desorption in the binary Ti–Al system. Journal of Alloys and Compounds, 2002, 330-332, 547-550.	2.8	25
139	Cyclic phase transformations of mechanically alloyed Co75Ti25 powders. Acta Materialia, 2002, 50, 1113-1123.	3.8	74
140	Magnetoresistance of nanocrystallized amorphous Fe–Zr–(Ru) alloys. Journal of Magnetism and Magnetic Materials, 2002, 242-245, 273-275.	1.0	7
141	Effect of substitutional elements on the hydrogen absorption–desorption properties of Ti3Al compounds. Journal of Alloys and Compounds, 2001, 314, 257-261.	2.8	28
142	Formation of amorphous and nanocrystalline alloys by hydrogenation of C15 laves RMn 2. Scripta Materialia, 2001, 44, 2019-2022.	2.6	7
143	Nanocrystallization and glass transition in Cu-Free Fe-Nb-B soft magnetic alloys. Scripta Materialia, 2001, 44, 1417-1420.	2.6	18
144	Hydrogen-induced amorphization in off-stoichiometric Ti3Al. Scripta Materialia, 2001, 44, 2591-2595.	2.6	13

#	Article	IF	CITATIONS
145	Mössbauer study of Nd5Fe77â^'xCrxB18 (x=0,3 and 5) nanocomposite magnets. Journal of Magnetism and Magnetic Materials, 2001, 226-230, 1481-1483.	1.0	4
146	Degradation of LaNi ₅ and LaNi _{4.7} Al _{0.3} Hydrogen-Absorbing Alloys by Cycling. Materials Transactions, JIM, 2000, 41, 581-584.	0.9	23
147	Effect of Fe-exchange-field penetration on the residual amorphous phase in nanocrystalline Fe92Zr8. Journal of Applied Physics, 2000, 87, 7097-7099.	1.1	19
148	Effect of Cr content on decomposition behaviour of amorphous Nd5Fe74Cr3B18. Scripta Materialia, 2000, 42, 487-492.	2.6	15
149	Effect of temperature on cementite formation by reaction of iron ore with H2-CH4-Ar gas. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2000, 31, 1139-1142.	1.0	12
150	Intergranular Magnetic Coupling and Coercivity in Two-Phase Nanocrystalline Materials Journal of the Magnetics Society of Japan, 2000, 24, 495-498.	0.4	1
151	Nanocrystalline Soft Magnetic Materials: A Decade of Alloy Development. Journal of Metastable and Nanocrystalline Materials, 1999, 2-6, 521-530.	0.1	2
152	Formation and decomposition of Fe3B/Nd2Fe14B nanocomposite structure in Fe–Nd–B–Cr melt-spun ribbons under isothermal annealing. Journal of Applied Physics, 1999, 85, 5914-5916.	1.1	27
153	Morphological and magnetic characteristics of monodispersed Co-cluster assemblies. Journal of Applied Physics, 1999, 86, 5726-5732.	1.1	53
154	Nanocrystalline Soft Magnetic Materials: A Decade of Alloy Development. Materials Science Forum, 1999, 312-314, 521-530.	0.3	25
155	Magnetic properties and crystallization of amorphous NdFe9Si2. Journal of Magnetism and Magnetic Materials, 1999, 196-197, 705-706.	1.0	Ο
156	Role of the residual amorphous phase in the intergranular magnetic coupling in nanocrystalline magnetic alloys. Journal of Magnetism and Magnetic Materials, 1999, 203, 229-230.	1.0	8
157	The effect of the spontaneous magnetization in the grain boundary region on the magnetic softness of nanocrystalline materials. Journal of Applied Physics, 1999, 85, 4400-4402.	1.1	29
158	Effect of Cr doping on crystallization behavior of Fe3B/Nd2Fe14B nanocomposite permanent magnets. Journal of Magnetism and Magnetic Materials, 1998, 177-181, 997-998.	1.0	34
159	The effect of coherent uniaxial anisotropies on the grain-size dependence of coercivity in nanocrystalline soft magnetic alloys. Journal of Magnetism and Magnetic Materials, 1998, 177-181, 949-950.	1.0	121
160	Critical behaviour in the temperature dependence of the coercivity for nanocrystalline soft-magnetic materials. Philosophical Magazine Letters, 1998, 77, 371-379.	0.5	5
161	Random magnetocrystalline anisotropy in two-phase nanocrystalline systems. Physical Review B, 1998, 58, 2730-2739.	1.1	243
162	On the Nanostructural Formation Process in Fe-M-B (M=Zr or Nb) Soft Magnetic Alloys. Materials Science Forum, 1997, 235-238, 765-770.	0.3	6

#	Article	IF	CITATIONS
163	Cyclic crystalline–amorphous transformations of mechanically alloyed Co75Ti25. Applied Physics Letters, 1997, 70, 1679-1681.	1.5	93
164	The role of alloying elements in Cu-free nanocrystalline Fe-Nb-B soft magnetic alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1997, 226-228, 554-558.	2.6	38
165	Magnetic force microscopy study of nanocrystalline Fe91Zr7B2 soft magnetic alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1997, 226-228, 586-589.	2.6	11
166	Time-temperature-transformation study of a nanocrystalline Fe91Zr7B2 soft magnetic alloy. Journal of Applied Physics, 1996, 79, 5149.	1.1	37
167	Mössbauer Study of Amorphous and Nanocrytalline Fe-Nb-B Alloys. Materials Science Forum, 1996, 225-227, 707-712.	0.3	6
168	The Role of the M Element in Nanocrystalline Fe-M-B (M=Zr, Hf and Nb) Soft Magnetic Alloys. Materials Science Forum, 1996, 225-227, 665-670.	0.3	6
169	Twoâ€stage nanostructural formation process in Fe–Nb–B soft magnetic alloys. Applied Physics Letters, 1995, 67, 1369-1371.	1.5	21
170	A STM study of the microstructure of amorphous and nanocrystalline Fe-Zr-B-Cu ribbons. Scripta Materialia, 1995, 5, 281-287.	0.5	4
171	Magnetic properties and core losses of nanocrystalline Feî—,Mî—,B (M î—¼ Zr, Hf or Nb) alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1994, 179-180, 127-131.	2.6	58
172	Production of flaky amorphous powders in Fe-Zr-B system by a supercooled liquid quenching method, and their magnetic properties. Journal of Materials Science, 1994, 29, 1825-1832.	1.7	2
173	The role of boron in nanocrystalline Feî—,Zrî—,B soft magnetic alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1994, 179-180, 501-505.	2.6	48
174	Magnetic properties and microstructure of nanocrystalline bcc Fe-M-B (M = Zr, Hf, Nb) alloys. Journal of Magnetism and Magnetic Materials, 1994, 133, 329-333.	1.0	59
175	Soft Magnetic Properties of Nanocrystalline Fe-Co-Zr-B Alloys. Journal of the Magnetics Society of Japan, 1994, 18, 800-804.	0.4	21
176	Magnetic core properties and their thermal stability in a BCC Feâ€Zrâ€Bâ€Cu alloy with nanoscale grain size. Electrical Engineering in Japan (English Translation of Denki Gakkai Ronbunshi), 1993, 113, 1-10.	0.2	0
177	Low core losses of nanocrystalline Fe–M–B (M=Zr, Hf, or Nb) alloys. Journal of Applied Physics, 1993, 74, 3316-3322.	1.1	208
178	Soft Magnetic Properties of Fe-Hf-B Ternary Alloys with Nanoscale bcc Structure. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 1993, 57, 964-971.	0.2	12
179	Soft Magnetic Properties of bcc Fe–Zr–B Sputtered Films with Nanoscale Grain Size. Materials Transactions, JIM, 1992, 33, 80-86.	0.9	26
180	Soft magnetic properties of nanocrystalline bcc Feâ€Zrâ€B and Feâ€Mâ€Bâ€Cu (M=transition metal) alloys with high saturation magnetization (invited). Journal of Applied Physics, 1991, 70, 6232-6237.	1.1	432

#	Article	IF	CITATIONS
181	Low Core Loss of a bcc Fe ₈₆ Zr ₇ B ₆ Cu _{1Alloy with Nanoscale Grain Size. Materials Transactions, JIM, 1991, 32, 551-556.}	t;0.9	81
182	High Saturation Magnetization and Soft Magnetic Properties of bcc Fe–Zr–B and Fe–Zr–B–M (M=Transition Metal) Alloys with Nanoscale Grain Size. Materials Transactions, JIM, 1991, 32, 93-102.	0.9	364
183	Changes in Microstructure and Soft Magnetic Properties of an Fe ₈₆ Zr ₇ B ₆ Cu _{1Amorphous Alloy upon Crystallization. Materials Transactions, JIM, 1991, 32, 961-968.}	t;0.9	62
184	Magnetic properties of iron-base b.c.c. alloys produced by mechanical alloying. Journal of Materials Science, 1991, 26, 4621-4625.	1.7	22
185	Soft Magnetic Properties of bcc Fe-M-B-Cu (M=Ti, Nb or Ta) Alloys with Nanoscale Grain Size. Japanese Journal of Applied Physics, 1991, 30, L1729-L1732.	0.8	39
186	High Saturation Magnetization and Soft Magnetic Properties of bcc Fe–Zr–B Alloys with Ultrafine Grain Structure. Materials Transactions, JIM, 1990, 31, 743-746.	0.9	414
187	3 References for 2. , 0, , 269-296.		Ο
188	2 Composition Tables. , 0, , 101-265.		0
189	Effect of Annealing on the Hydrogen Permeation and Mechanical Behaviour of Nb-Ni-Zr Alloy Membranes. Materials Science Forum, 0, 654-656, 2839-2842.	0.3	5
190	Resolving the Complex Spin Structure in Fe-Based Soft Magnetic Nanocrystalline Material by Magnetic Small-Angle Neutron Scattering. Neutron News, 0, , 1-3.	0.1	0