Hong Li

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/6539165/hong-li-publications-by-year.pdf

Version: 2024-04-05

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

106 43,167 192 475 h-index g-index citations papers 50,364 7.89 512 11.4 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
475	New insights into the mechanism of cation migration induced by cation and dynamic coupling in superionic conductors. <i>Journal of Materials Chemistry A</i> , 2022 , 10, 3093-3101	13	2
474	All-in-One Ionic E lectronic Dual-Carrier Conducting Framework Thickening All-Solid-State Electrode. <i>ACS Energy Letters</i> , 2022 , 7, 766-772	20.1	0
473	Organic-inorganic composite SEI for a stable Li metal anode by in-situ polymerization. <i>Nano Energy</i> , 2022 , 95, 106983	17.1	9
472	Solid state ionics (Selected topics and new directions. <i>Progress in Materials Science</i> , 2022 , 126, 100921	42.2	2
471	Probing lattice defects in crystalline battery cathode using hard X-ray nanoprobe with data-driven modeling. <i>Energy Storage Materials</i> , 2022 , 45, 647-655	19.4	Ο
470	Dopamine-Based Materials: Recent Advances in Synthesis Methods and Applications. <i>Nanostructure Science and Technology</i> , 2022 , 133-164	0.9	0
469	Structural and chemical evolution in layered oxide cathodes of lithium-ion batteries revealed by synchrotron techniques <i>National Science Review</i> , 2022 , 9, nwab146	10.8	10
468	Controlling Li deposition below the interface. EScience, 2022,		15
467	Ionic Conductivity of LiSiON and the Effect of Amorphization/Heterovalent Doping on Li+Diffusion. <i>Inorganics</i> , 2022 , 10, 45	2.9	O
466	A high-performance MnO2 cathode doped with group VIII metal for aqueous Zn-ion batteries: In-situ X-Ray diffraction study on Zn2+ storage mechanism. <i>Journal of Power Sources</i> , 2022 , 527, 231198	8.9	1
465	Raising the intrinsic safety of layered oxide cathodes by surface re-lithiation with LLZTO garnet-type solid electrolytes <i>Advanced Materials</i> , 2022 , e2200655	24	5
464	The influence of electrolyte concentration and solvent on operational voltage of Li/CF primary batteries elucidated by Nernst Equation. <i>Journal of Power Sources</i> , 2022 , 527, 231193	8.9	3
463	Mechanical-electrochemical modeling of silicon-graphite composite anode for lithium-ion batteries. Journal of Power Sources, 2022 , 527, 231178	8.9	1
462	A Better Choice to Achieve High Volumetric Energy Density: Anode-Free Lithium Metal Batteries <i>Advanced Materials</i> , 2022 , e2110323	24	6
461	Exploring magnetron sputtering preparation of high-quality LiNi0.5Mn1.5O4 films by controlling the oxygen atmosphere at moderate temperature. <i>Thin Solid Films</i> , 2022 , 750, 139174	2.2	
460	Water-Stable Sulfide Solid Electrolyte Membranes Directly Applicable in All-Solid-State Batteries Enabled by Superhydrophobic Li + -Conducting Protection Layer. <i>Advanced Energy Materials</i> , 2022 , 12, 2102348	21.8	10
459	Interfacial layer rich in organic fluoride enabling stable cycling of high-voltage PEO-based solid-state lithium batteries. <i>Electrochimica Acta</i> , 2021 , 139617	6.7	1

(2021-2021)

458	Interplay between solid-electrolyte interphase and (in)active LixSi in\(\frac{1}{2}\)illicon anode. <i>Cell Reports Physical Science</i> , 2021 , 2, 100668	6.1	11
457	SnF2-Catalyzed Formation of Polymerized Dioxolane as Solid Electrolyte and its Thermal Decomposition Behavior. <i>Angewandte Chemie - International Edition</i> , 2021 ,	16.4	7
456	Aqueous interphase formed by CO brings electrolytes back to salt-in-water regime. <i>Nature Chemistry</i> , 2021 , 13, 1061-1069	17.6	14
455	5V-class sulfurized spinel cathode stable in sulfide all-solid-state batteries. <i>Nano Energy</i> , 2021 , 90, 1065	8 19 7.1	12
454	Delithiation-driven topotactic reaction endows superior cycling performances for high-energy-density FeS (111x1111) cathodes. <i>Energy Storage Materials</i> , 2021 , 43, 579-584	19.4	3
453	In-situ Polymerized Solid-state Electrolytes with Stable Cycling for Li/LiCoO2 Batteries. <i>Nano Energy</i> , 2021 , 91, 106679	17.1	7
452	Oxygen-redox reactions in LiCoO2 cathode without OD bonding during charge-discharge. <i>Joule</i> , 2021 , 5, 720-736	27.8	15
451	Cycling mechanism of Li2MnO3: Li©O2[batteries and commonality on oxygen redox in cathode materials. <i>Joule</i> , 2021 , 5, 975-997	27.8	30
450	Enhancing the Thermal Stability of NASICON Solid Electrolyte Pellets against Metallic Lithium by Defect Modification. <i>ACS Applied Materials & Defect Modification</i> 13, 18743-18749	9.5	9
449	First-Principles Simulations for the Surface Evolution and Mn Dissolution in the Fully Delithiated Spinel LiMnO. <i>Langmuir</i> , 2021 , 37, 5252-5259	4	6
448	Synergistic Effect of Temperature and Electrolyte Concentration on Solid-State Interphase for High-Performance Lithium Metal Batteries. <i>Advanced Energy and Sustainability Research</i> , 2021 , 2, 21000	170 ⁶	1
447	The Electrolysis of Anti-Perovskite Li2OHCl for Prelithiation of High-Energy-Density Batteries. <i>Angewandte Chemie</i> , 2021 , 133, 13123-13130	3.6	2
446	The Electrolysis of Anti-Perovskite Li OHCl for Prelithiation of High-Energy-Density Batteries. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 13013-13020	16.4	6
445	Cation-synergy stabilizing anion redox of Chevrel phase Mo6S8 in aluminum ion battery. <i>Energy Storage Materials</i> , 2021 , 37, 87-93	19.4	12
444	Enabling the thermal stability of solid electrolyte interphase in Li-ion battery. <i>Informal</i> Materily, 2021 , 3, 648-661	23.1	24
443	Dense All-Electrochem-Active Electrodes for All-Solid-State Lithium Batteries. <i>Advanced Materials</i> , 2021 , 33, e2008723	24	11
442	Oxygen anionic redox activated high-energy cathodes: Status and prospects. <i>ETransportation</i> , 2021 , 8, 100118	12.7	11
441	Hunting Sodium Dendrites in NASICON-Based Solid-State Electrolytes. <i>Energy Material Advances</i> , 2021 , 2021, 1-10	1	12

440	Ultralight Electrolyte for High-Energy Lithium-Sulfur Pouch Cells. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 17547-17555	16.4	21
439	Gaseous electrolyte additive BF3 for high-power Li/CFx primary batteries. <i>Energy Storage Materials</i> , 2021 , 38, 482-488	19.4	10
438	Ultralight Electrolyte for High-Energy LithiumBulfur Pouch Cells. <i>Angewandte Chemie</i> , 2021 , 133, 17688	-3.7696	56
437	Progress in thermal stability of all-solid-state-Li-ion-batteries. <i>Informal</i> i@Materilly, 2021 , 3, 827-853	23.1	22
436	Amorphous Redox-Rich Polysulfides for Mg Cathodes. <i>Jacs Au</i> , 2021 , 1, 1266-1274		4
435	Fast Li Plating Behavior Probed by X-ray Computed Tomography. <i>Nano Letters</i> , 2021 , 21, 5254-5261	11.5	6
434	A Reflection on Lithium-Ion Batteries from a Lithium-Resource Perspective. <i>Advanced Energy and Sustainability Research</i> , 2021 , 2, 2100062	1.6	О
433	Fluorinated Poly-oxalate Electrolytes Stabilizing both Anode and Cathode Interfaces for All-Solid-State Li/NMC811 Batteries. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 18335-18343	16.4	13
432	Superior All-Solid-State Batteries Enabled by a Gas-Phase-Synthesized Sulfide Electrolyte with Ultrahigh Moisture Stability and Ionic Conductivity. <i>Advanced Materials</i> , 2021 , 33, e2100921	24	20
431	The Role of Electron Localization in Covalency and Electrochemical Properties of Lithium-Ion Battery Cathode Materials. <i>Advanced Functional Materials</i> , 2021 , 31, 2001633	15.6	9
430	Rational Design of Mixed Electronic-Ionic Conducting Ti-Doping Li7La3Zr2O12 for Lithium Dendrites Suppression. <i>Advanced Functional Materials</i> , 2021 , 31, 2001918	15.6	28
429	A Multilayer Ceramic Electrolyte for All-Solid-State Li Batteries. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 3781-3790	16.4	21
428	Enhancing cycle stability of Li metal anode by using polymer separators coated with Ti-containing solid electrolytes. <i>Rare Metals</i> , 2021 , 40, 1357-1365	5.5	12
427	A Multilayer Ceramic Electrolyte for All-Solid-State Li Batteries. <i>Angewandte Chemie</i> , 2021 , 133, 3825-38	8 3 . 4	9
426	Deciphering the Oxygen Absorption Pre-edge: A Caveat on its Application for Probing Oxygen Redox Reactions in Batteries. <i>Energy and Environmental Materials</i> , 2021 , 4, 246-254	13	24
425	Epitaxial Induced Plating Current-Collector Lasting Lifespan of Anode-Free Lithium Metal Battery. <i>Advanced Energy Materials</i> , 2021 , 11, 2003709	21.8	25
424	Probing the Energy Storage Mechanism of Quasi-Metallic Na in Hard Carbon for Sodium-Ion Batteries. <i>Advanced Energy Materials</i> , 2021 , 11, 2003854	21.8	40
423	Fluorinated Poly-oxalate Electrolytes Stabilizing both Anode and Cathode Interfaces for All-Solid-State Li/NMC811 Batteries. <i>Angewandte Chemie</i> , 2021 , 133, 18483-18491	3.6	4

(2020-2021)

422	Controllable ionic self-assembl of polyoxometalate and melamine for synthesis of nanostructured Ag. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2021 , 623, 126732	5.1	O
421	Reaction Mechanisms of Ta-Substituted Cubic LiLaZrO with Solvents During Storage. <i>ACS Applied Materials & During Storage</i> , 2021 , 13, 38384-38393	9.5	3
420	Low-Density Fluorinated Silane Solvent Enhancing Deep Cycle Lithium-Sulfur Batteries' Lifetime. <i>Advanced Materials</i> , 2021 , 33, e2102034	24	9
419	High-performance Li-air battery after limiting inter-electrode crosstalk. <i>Energy Storage Materials</i> , 2021 , 39, 225-231	19.4	2
418	Amorphous anion-rich titanium polysulfides for aluminum-ion batteries. Science Advances, 2021, 7,	14.3	18
4 ¹ 7	Recent advances in dopamine-based materials constructed via one-pot co-assembly strategy. <i>Advances in Colloid and Interface Science</i> , 2021 , 295, 102489	14.3	5
416	TiO2 (B) anode for high-voltage aqueous Li-ion batteries. <i>Energy Storage Materials</i> , 2021 , 42, 438-444	19.4	5
415	Electronic Conductive Inorganic Cathodes Promising High-Energy Organic Batteries. <i>Advanced Materials</i> , 2021 , 33, e2005781	24	2
414	Rational design of layered oxide materials for sodium-ion batteries. <i>Science</i> , 2020 , 370, 708-711	33.3	209
413	Realizing High Volumetric Lithium Storage by Compact and Mechanically Stable Anode Designs. <i>ACS Energy Letters</i> , 2020 , 5, 1986-1995	20.1	38
412	The Thermal Stability of Lithium Solid Electrolytes with Metallic Lithium. <i>Joule</i> , 2020 , 4, 812-821	27.8	87
411	Delayed Phase Transition and Improved Cycling/Thermal Stability by Spinel LiNiMnO Modification for LiCoO Cathode at High Voltages. <i>ACS Applied Materials & Description</i> (12, 27339-27349)	9.5	12
410	Suppressing transition metal dissolution and deposition in lithium-ion batteries using oxide solid electrolyte coated polymer separator. <i>Chinese Physics B</i> , 2020 , 29, 088201	1.2	4
409	Wearable Bipolar Rechargeable Aluminum Battery 2020 , 2, 808-813		9
408	An In Situ Formed Surface Coating Layer Enabling LiCoO2 with Stable 4.6 V High-Voltage Cycle Performances. <i>Advanced Energy Materials</i> , 2020 , 10, 2001413	21.8	87
407	Na3Zr2Si2PO12: A Stable Na+-Ion Solid Electrolyte for Solid-State Batteries. <i>ACS Applied Energy Materials</i> , 2020 , 3, 7427-7437	6.1	31
406	Realizing long-term cycling stability and superior rate performance of 4.5 LiCoO2 by aluminum doped zinc oxide coating achieved by a simple wet-mixing method. <i>Journal of Power Sources</i> , 2020 , 470, 228423	8.9	23
405	Influence of fluoroethylene carbonate on the solid electrolyte interphase of silicon anode for Li-ion batteries: A scanning force spectroscopy study. <i>Chinese Physics B</i> , 2020 , 29, 048203	1.2	3

404	Mn Ion Dissolution Mechanism for Lithium-Ion Battery with LiMnO Cathode: Ultraviolet-Visible Spectroscopy and Molecular Dynamics Simulations. <i>Journal of Physical Chemistry Letters</i> , 2020 , 11, 3051	-9 0 57	28
403	Low-temperature fusion fabrication of Li-Cu alloy anode with in situ formed 3D framework of inert LiCu nanowires for excellent Li storage performance. <i>Science Bulletin</i> , 2020 , 65, 1907-1915	10.6	23
402	Improving LiNi0.9Co0.08Mn0.02O2日 cyclic stability via abating mechanical damages. <i>Energy Storage Materials</i> , 2020 , 28, 1-9	19.4	25
401	Increasing Poly(ethylene oxide) Stability to 4.5 V by Surface Coating of the Cathode. <i>ACS Energy Letters</i> , 2020 , 5, 826-832	20.1	91
400	High-throughput computational discovery of K2CdO2 as an ion conductor for solid-state potassium-ion batteries. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 5157-5162	13	9
399	Electrolyte-assisted dissolution-recrystallization mechanism towards high energy density and power density CF cathodes in potassium cell. <i>Nano Energy</i> , 2020 , 70, 104552	17.1	19
398	Enabling Stable Cycling of 4.2 V High-Voltage All-Solid-State Batteries with PEO-Based Solid Electrolyte. <i>Advanced Functional Materials</i> , 2020 , 30, 1909392	15.6	77
397	Bringing forward the development of battery cells for automotive applications: Perspective of R&D activities in China, Japan, the EU and the USA. <i>Journal of Power Sources</i> , 2020 , 459, 228073	8.9	59
396	A wide-temperature superior ionic conductive polymer electrolyte for lithium metal battery. <i>Nano Energy</i> , 2020 , 73, 104786	17.1	42
395	Mobile Ions in Composite Solids. <i>Chemical Reviews</i> , 2020 , 120, 4169-4221	68.1	105
395 394	Mobile Ions in Composite Solids. <i>Chemical Reviews</i> , 2020 , 120, 4169-4221 Reversible Al3+ storage mechanism in anatase TiO2 cathode material for ionic liquid electrolyte-based aluminum-ion batteries. <i>Journal of Energy Chemistry</i> , 2020 , 51, 72-80	68.1	105
	Reversible Al3+ storage mechanism in anatase TiO2 cathode material for ionic liquid		
394	Reversible Al3+ storage mechanism in anatase TiO2 cathode material for ionic liquid electrolyte-based aluminum-ion batteries. <i>Journal of Energy Chemistry</i> , 2020 , 51, 72-80 Investigations on the Fundamental Process of Cathode Electrolyte Interphase Formation and	12	38
394 393	Reversible Al3+ storage mechanism in anatase TiO2 cathode material for ionic liquid electrolyte-based aluminum-ion batteries. <i>Journal of Energy Chemistry</i> , 2020 , 51, 72-80 Investigations on the Fundamental Process of Cathode Electrolyte Interphase Formation and Evolution of High-Voltage Cathodes. <i>ACS Applied Materials & Description of Mat</i>	12 9.5	38 76
394 393 392	Reversible Al3+ storage mechanism in anatase TiO2 cathode material for ionic liquid electrolyte-based aluminum-ion batteries. <i>Journal of Energy Chemistry</i> , 2020 , 51, 72-80 Investigations on the Fundamental Process of Cathode Electrolyte Interphase Formation and Evolution of High-Voltage Cathodes. <i>ACS Applied Materials & Distriction of High-Voltage Cathodes</i> . <i>ACS Applied Materials & Distriction of Chevrel Mos Nanosheets for Advanced Multivalent Batteries</i> . <i>ACS Nano</i> , 2020 , 14, 1102-1110 The Compensation Effect Mechanism of Fe-Ni Mixed Prussian Blue Analogues in Aqueous	9.5 16.7	38 76 30
394 393 392 391	Reversible Al3+ storage mechanism in anatase TiO2 cathode material for ionic liquid electrolyte-based aluminum-ion batteries. <i>Journal of Energy Chemistry</i> , 2020 , 51, 72-80 Investigations on the Fundamental Process of Cathode Electrolyte Interphase Formation and Evolution of High-Voltage Cathodes. <i>ACS Applied Materials & Discourse Materials & Dis</i>	9·5 16.7	38 76 30 51
394 393 392 391 390	Reversible Al3+ storage mechanism in anatase TiO2 cathode material for ionic liquid electrolyte-based aluminum-ion batteries. <i>Journal of Energy Chemistry</i> , 2020 , 51, 72-80 Investigations on the Fundamental Process of Cathode Electrolyte Interphase Formation and Evolution of High-Voltage Cathodes. <i>ACS Applied Materials & Mat</i>	9.5 16.7 8.3	38 76 30 51 67

(2020-2020)

386	Neutron-based characterization techniques for lithium-ion battery research. <i>Chinese Physics B</i> , 2020 , 29, 018201	1.2	20
385	High-Voltage Aqueous Na-Ion Battery Enabled by Inert-Cation-Assisted Water-in-Salt Electrolyte. <i>Advanced Materials</i> , 2020 , 32, e1904427	24	128
384	Insights of the anionic redox in P2Na0.67Ni0.33Mn0.67O2. <i>Nano Energy</i> , 2020 , 78, 105285	17.1	22
383	pH-Responsive dopamine-based nanoparticles assembled via Schiff base bonds for synergistic anticancer therapy. <i>Chemical Communications</i> , 2020 , 56, 13347-13350	5.8	8
382	Local spring effect in titanium-based layered oxides. <i>Energy and Environmental Science</i> , 2020 , 13, 4371-	4 3 804	2
381	Size effect on the growth and pulverization behavior of Si nanodomains in SiO anode. <i>Nano Energy</i> , 2020 , 78, 105101	17.1	22
380	High-rate cathode CrSSe based on anion reactions for lithium-ion batteries. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 25739-25745	13	4
379	Battery prelithiation enabled by lithium fixation on cathode. <i>Journal of Power Sources</i> , 2020 , 480, 22910	0\$.9	2
378	Hierarchical Defect Engineering for LiCoO2 through Low-Solubility Trace Element Doping. <i>CheM</i> , 2020 , 6, 2759-2769	16.2	29
377	4.2 V poly(ethylene oxide)-based all-solid-state lithium batteries with superior cycle and safety performance. <i>Energy Storage Materials</i> , 2020 , 32, 191-198	19.4	28
376	Interface Concentrated-Confinement Suppressing Cathode Dissolution in Water-in-Salt Electrolyte. <i>Advanced Energy Materials</i> , 2020 , 10, 2000665	21.8	34
375	Joint Cationic and Anionic Redox Chemistry for Advanced Mg Batteries. <i>Nano Letters</i> , 2020 , 20, 6852-68	8 58 .5	11
374	Interface engineering renders high-rate high-capacity lithium storage in black phosphorous composite anodes with excellent cycling durability. <i>Science China Chemistry</i> , 2020 , 63, 1734-1736	7.9	2
373	Simplifying and accelerating kinetics enabling fast-charge Al batteries. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 23834-23843	13	6
372	Structure Design of Cathode Electrodes for Solid-State Batteries: Challenges and Progress. <i>Small Structures</i> , 2020 , 1, 2000042	8.7	36
371	Unraveling the Reaction Mechanism of FeS as a Li-Ion Battery Cathode. <i>ACS Applied Materials & Interfaces</i> , 2020 , 12, 44850-44857	9.5	24
370	Liquid phase therapy to solid electrolytellectrode interface in solid-state Li metal batteries: A review. <i>Energy Storage Materials</i> , 2020 , 24, 75-84	19.4	109
369	Local structure adaptability through multi cations for oxygen redox accommodation in Li-Rich layered oxides. <i>Energy Storage Materials</i> , 2020 , 24, 384-393	19.4	75

368	A stabilized PEO-based solid electrolyte via a facile interfacial engineering method for a high voltage solid-state lithium metal battery. <i>Chemical Communications</i> , 2020 , 56, 5633-5636	5.8	18
367	Correlated Migration Invokes Higher Na+-Ion Conductivity in NaSICON-Type Solid Electrolytes. <i>Advanced Energy Materials</i> , 2019 , 9, 1902373	21.8	86
366	A dual-phase Li C a alloy with a patternable and lithiophilic 3D framework for improving lithium anode performance. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 22377-22384	13	17
365	Li-free Cathode Materials for High Energy Density Lithium Batteries. <i>Joule</i> , 2019 , 3, 2086-2102	27.8	123
364	Triple effects of Sn-substitution on Na0.67Ni0.33Mn0.67O2. <i>Journal of Materials Science and Technology</i> , 2019 , 35, 1250-1254	9.1	11
363	Stabilizing the Oxygen Lattice and Reversible Oxygen Redox Chemistry through Structural Dimensionality in Lithium-Rich Cathode Oxides. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 4323-4327	16.4	81
362	Slope-Dominated Carbon Anode with High Specific Capacity and Superior Rate Capability for High Safety Na-Ion Batteries. <i>Angewandte Chemie</i> , 2019 , 131, 4405-4409	3.6	29
361	Stabilizing the Oxygen Lattice and Reversible Oxygen Redox Chemistry through Structural Dimensionality in Lithium-Rich Cathode Oxides. <i>Angewandte Chemie</i> , 2019 , 131, 4367-4371	3.6	12
360	Slope-Dominated Carbon Anode with High Specific Capacity and Superior Rate Capability for High Safety Na-Ion Batteries. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 4361-4365	16.4	100
359	Influence of carbon coating on the electrochemical performance of SiO@C/graphite composite anode materials. <i>Chinese Physics B</i> , 2019 , 28, 068201	1.2	2
358	Trace doping of multiple elements enables stable battery cycling of LiCoO2 at 4.6 V. <i>Nature Energy</i> , 2019 , 4, 594-603	62.3	299
357	In Situ Formation of a Stable Interface in Solid-State Batteries. ACS Energy Letters, 2019, 4, 1650-1657	20.1	58
356	Improved electrochemical performance of Li(Ni0.6Co0.2Mn0.2)O2 at high charging cut-off voltage with Li1.4Al0.4Ti1.6(PO4)3 surface coating. <i>Chinese Physics B</i> , 2019 , 28, 068202	1.2	10
355	Safe Lithium-Metal Anodes for LiD2 Batteries: From Fundamental Chemistry to Advanced Characterization and Effective Protection. <i>Batteries and Supercaps</i> , 2019 , 2, 638-658	5.6	48
354	Electrochemical and optoelectric behavior of Al-doped ZnO films as transparent anode for Li-ion batteries. <i>Materials Today Communications</i> , 2019 , 19, 471-475	2.5	7
353	Research and development of advanced battery materials in China. <i>Energy Storage Materials</i> , 2019 , 23, 144-153	19.4	85
352	Building aqueous K-ion batteries for energy storage. <i>Nature Energy</i> , 2019 , 4, 495-503	62.3	381
351	Beyond imaging: Applications of atomic force microscopy for the study of Lithium-ion batteries. <i>Ultramicroscopy</i> , 2019 , 204, 34-48	3.1	20

350	Practical Evaluation of Li-Ion Batteries. <i>Joule</i> , 2019 , 3, 911-914	27.8	161
349	The Ab Initio Calculations on the Areal Specific Resistance of Li-Metal/Li7La3Zr2O12 Interphase. <i>Advanced Theory and Simulations</i> , 2019 , 2, 1900028	3.5	14
348	In situ formation of a bifunctional interlayer enabled by a conversion reaction to initiatively prevent lithium dendrites in a garnet solid electrolyte. <i>Energy and Environmental Science</i> , 2019 , 12, 1404-1412	35.4	124
347	Anisotropic expansion and size-dependent fracture of silicon nanotubes during lithiation. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 15113-15122	13	18
346	Lithium metal batteries capable of stable operation at elevated temperature. <i>Energy Storage Materials</i> , 2019 , 23, 646-652	19.4	50
345	WO3 nanocrystal prepared by self-assembly of phosphotungstic acid and dopamine for photocatalytic degradation of Congo red. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2019 , 572, 147-151	5.1	10
344	Exploring reaction dynamics in lithium-sulfur batteries by time-resolved operando sulfur K-edge X-ray absorption spectroscopy. <i>Chemical Communications</i> , 2019 , 55, 4993-4996	5.8	6
343	High Rate Li-Ion Batteries with Cation-Disordered Cathodes. <i>Joule</i> , 2019 , 3, 1064-1079	27.8	8
342	Structural and mechanistic revelations on high capacity cation-disordered Li-rich oxides for rechargeable Li-ion batteries. <i>Energy Storage Materials</i> , 2019 , 16, 354-363	19.4	67
341	Predicting synthesizability. Journal Physics D: Applied Physics, 2019, 52,	3	161
341	Predicting synthesizability. <i>Journal Physics D: Applied Physics</i> , 2019 , 52, High air-stability and superior lithium ion conduction of Li3+3P1-Zn S4-O by aliovalent substitution of ZnO for all-solid-state lithium batteries. <i>Energy Storage Materials</i> , 2019 , 17, 266-274	3	161 61
	High air-stability and superior lithium ion conduction of Li3+3P1-Zn S4-O by aliovalent substitution	19.4	,
340	High air-stability and superior lithium ion conduction of Li3+3P1-Zn S4-O by aliovalent substitution of ZnO for all-solid-state lithium batteries. <i>Energy Storage Materials</i> , 2019 , 17, 266-274	19.4 1 0 2.7	,
340	High air-stability and superior lithium ion conduction of Li3+3P1-Zn S4-O by aliovalent substitution of ZnO for all-solid-state lithium batteries. <i>Energy Storage Materials</i> , 2019 , 17, 266-274 Practical evaluation of energy densities for sulfide solid-state batteries. <i>ETransportation</i> , 2019 , 1, 1000	19.4 1 0 2.7	61 47
340 339 338	High air-stability and superior lithium ion conduction of Li3+3P1-Zn S4-O by aliovalent substitution of ZnO for all-solid-state lithium batteries. <i>Energy Storage Materials</i> , 2019 , 17, 266-274 Practical evaluation of energy densities for sulfide solid-state batteries. <i>ETransportation</i> , 2019 , 1, 1000 In-situ visualization of lithium plating in all-solid-state lithium-metal battery. <i>Nano Energy</i> , 2019 , 63, 10. Artificial solid electrolyte interphase based on polyacrylonitrile for homogenous and dendrite-free	19.4 102.7 38 9 51	61 47 78
340 339 338 337	High air-stability and superior lithium ion conduction of Li3+3P1-Zn S4-O by aliovalent substitution of ZnO for all-solid-state lithium batteries. <i>Energy Storage Materials</i> , 2019 , 17, 266-274 Practical evaluation of energy densities for sulfide solid-state batteries. <i>ETransportation</i> , 2019 , 1, 1000 In-situ visualization of lithium plating in all-solid-state lithium-metal battery. <i>Nano Energy</i> , 2019 , 63, 100 Artificial solid electrolyte interphase based on polyacrylonitrile for homogenous and dendrite-free deposition of lithium metal. <i>Chinese Physics B</i> , 2019 , 28, 078202 Water-in-Salt Electrolyte Promotes High-Capacity FeFe(CN) Cathode for Aqueous Al-Ion Battery.	19.4 102.7 38951 1.2	61 47 78 0
340 339 338 337 336	High air-stability and superior lithium ion conduction of Li3+3P1-Zn S4-O by aliovalent substitution of ZnO for all-solid-state lithium batteries. <i>Energy Storage Materials</i> , 2019 , 17, 266-274 Practical evaluation of energy densities for sulfide solid-state batteries. <i>ETransportation</i> , 2019 , 1, 1000 In-situ visualization of lithium plating in all-solid-state lithium-metal battery. <i>Nano Energy</i> , 2019 , 63, 100 Artificial solid electrolyte interphase based on polyacrylonitrile for homogenous and dendrite-free deposition of lithium metal. <i>Chinese Physics B</i> , 2019 , 28, 078202 Water-in-Salt Electrolyte Promotes High-Capacity FeFe(CN) Cathode for Aqueous Al-Ion Battery. <i>ACS Applied Materials & Covalently assembled dopamine papoparticle</i> as an intrinsic photosepsitizer and pH-responsive	19.4 102.7 38951 1.2	61 47 78 0

332	Li-ion battery material under high pressure: amorphization and enhanced conductivity of LiTiO. <i>National Science Review</i> , 2019 , 6, 239-246	10.8	35
331	Graphite as a potassium ion battery anode in carbonate-based electrolyte and ether-based electrolyte. <i>Journal of Power Sources</i> , 2019 , 409, 24-30	8.9	135
330	Advanced Characterization Techniques in Promoting Mechanism Understanding for Lithium Bulfur Batteries. <i>Advanced Functional Materials</i> , 2018 , 28, 1707543	15.6	53
329	Core-Shell FeS@NaPSSe Nanorods for Room Temperature All-Solid-State Sodium Batteries with High Energy Density. <i>ACS Nano</i> , 2018 , 12, 2809-2817	16.7	46
328	Perspectives of automotive battery R&D in China, Germany, Japan, and the USA. <i>Journal of Power Sources</i> , 2018 , 382, 176-178	8.9	124
327	Dynamic evolution of cathode electrolyte interphase (CEI) on high voltage LiCoO2 cathode and its interaction with Li anode. <i>Energy Storage Materials</i> , 2018 , 14, 1-7	19.4	158
326	Surface-protected LiCoO2 with ultrathin solid oxide electrolyte film for high-voltage lithium ion batteries and lithium polymer batteries. <i>Journal of Power Sources</i> , 2018 , 388, 65-70	8.9	82
325	Enhanced ionic conductivity in LAGP/LATP composite electrolyte. <i>Chinese Physics B</i> , 2018 , 27, 038201	1.2	10
324	Recent developments in dopamine-based materials for cancer diagnosis and therapy. <i>Advances in Colloid and Interface Science</i> , 2018 , 252, 1-20	14.3	36
323	Recent advances in self-assembly of spin crossover materials and their applications. <i>Current Opinion in Colloid and Interface Science</i> , 2018 , 35, 9-16	7.6	18
322	Sustainable Interfaces between Si Anodes and Garnet Electrolytes for Room-Temperature Solid-State Batteries. <i>ACS Applied Materials & Date of the Solid-State Batteries</i> . <i>ACS Applied Materials & Date of the Solid-State Batteries</i> . <i>ACS Applied Materials & Date of the Solid-State Batteries</i> .	9.5	28
321	TiS2 as a high performance potassium ion battery cathode in ether-based electrolyte. <i>Energy Storage Materials</i> , 2018 , 12, 216-222	19.4	102
320	Electro-plating and stripping behavior on lithium metal electrode with ordered three-dimensional structure. <i>Nano Energy</i> , 2018 , 45, 463-470	17.1	54
319	Biphenyl-lithium-TEGDME solution as anolyte for high energy density non-aqueous redox flow lithium battery. <i>Journal of Energy Chemistry</i> , 2018 , 27, 1362-1368	12	16
318	Drawing a Soft Interface: An Effective Interfacial Modification Strategy for Garnet-Type Solid-State Li Batteries. <i>ACS Energy Letters</i> , 2018 , 3, 1212-1218	20.1	236
317	Nanoscaled NaPS Solid Electrolyte for All-Solid-State FeS/Na Batteries with Ultrahigh Initial Coulombic Efficiency of 95% and Excellent Cyclic Performances. <i>ACS Applied Materials & Discrete Faces</i> , 2018 , 10, 12300-12304	9.5	49
316	Review on modeling of the anode solid electrolyte interphase (SEI) for lithium-ion batteries. <i>Npj Computational Materials</i> , 2018 , 4,	10.9	589
315	A facile electrode preparation method for accurate electrochemical measurements of double-side-coated electrode from commercial Li-ion batteries. <i>Journal of Power Sources</i> , 2018 , 384, 172-177	8.9	5

314	The effects of oxygen in spinel oxide LiTiO thin films. Scientific Reports, 2018, 8, 3995	4.9	7
313	Application of Li2S to compensate for loss of active lithium in a Si I anode. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 6206-6211	13	14
312	Structure-Induced Reversible Anionic Redox Activity in Na Layered Oxide Cathode. <i>Joule</i> , 2018 , 2, 125-1	40 7.8	216
311	Anthraquinone derivative as high-performance anode material for sodium-ion batteries using ether-based electrolytes. <i>Green Energy and Environment</i> , 2018 , 3, 63-70	5.7	11
310	Tuning hybrid liquid/solid electrolytes by lowering Li salt concentration for lithium batteries. <i>Chinese Physics B</i> , 2018 , 27, 068201	1.2	
309	A high-performance rechargeable Li D 2 battery with quasi-solid-state electrolyte. <i>Chinese Physics B</i> , 2018 , 27, 078201	1.2	8
308	A multiphysics model that can capture crack patterns in Si thin films based on their microstructure. Journal of Power Sources, 2018 , 400, 383-391	8.9	18
307	Pre-Oxidation-Tuned Microstructures of Carbon Anodes Derived from Pitch for Enhancing Na Storage Performance. <i>Advanced Energy Materials</i> , 2018 , 8, 1800108	21.8	100
306	Improved electrochemical performances of high voltage LiCoO2 with tungsten doping. <i>Chinese Physics B</i> , 2018 , 27, 088202	1.2	7
305	Three-dimensional atomic-scale observation of structural evolution of cathode material in a working all-solid-state battery. <i>Nature Communications</i> , 2018 , 9, 3341	17.4	45
304	New horizons for inorganic solid state ion conductors. <i>Energy and Environmental Science</i> , 2018 , 11, 1945	5-3 9 .76	601
303	Exploring PVFM-Based Janus Membrane-Supporting Gel Polymer Electrolyte for Highly Durable Li-O Batteries. <i>ACS Applied Materials & amp; Interfaces</i> , 2018 , 10, 22237-22247	9.5	15
302	Organic-inorganic hybrid based on co-assembly of polyoxometalate and dopamine for synthesis of nanostructured Ag. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2018 , 538, 513-518	3 ^{5.1}	12
301	Long lifespan lithium metal anodes enabled by Al2O3 sputter coating. <i>Energy Storage Materials</i> , 2018 , 10, 16-23	19.4	124
300	Synchrotron Radiation Nanoscale X-ray Imaging Technology And Scientific Big Data Mining Assist Energy Materials Research. <i>Microscopy and Microanalysis</i> , 2018 , 24, 542-543	0.5	
299	Discovery and design of lithium battery materials via high-throughput modeling. <i>Chinese Physics B</i> , 2018 , 27, 128801	1.2	1
298	Interfaces Between Cathode and Electrolyte in Solid State Lithium Batteries: Challenges and Perspectives. <i>Frontiers in Chemistry</i> , 2018 , 6, 616	5	105
297	An Armored Mixed Conductor Interphase on a Dendrite-Free Lithium-Metal Anode. <i>Advanced Materials</i> , 2018 , 30, e1804461	24	246

296	Mechanism Study on the Interfacial Stability of a Lithium Garnet-Type Oxide Electrolyte against Cathode Materials. <i>ACS Applied Energy Materials</i> , 2018 , 1, 5968-5976	6.1	37
295	Temperature-Sensitive Structure Evolution of Lithium-Manganese-Rich Layered Oxides for Lithium-Ion Batteries. <i>Journal of the American Chemical Society</i> , 2018 , 140, 15279-15289	16.4	108
294	Homogeneous Interface Conductivity for Lithium Dendrite-Free Anode. ACS Energy Letters, 2018, 3, 22	25 9 -226	6681
293	Size effect of Si particles on the electrochemical performances of Si/C composite anodes. <i>Chinese Physics B</i> , 2018 , 27, 088201	1.2	4
292	Unusual Activation of Cation Disordering by Li/Fe Rearrangement in Triplite LiFeSO4F. <i>Advanced Energy Materials</i> , 2018 , 8, 1800298	21.8	6
291	Novel Concentrated Li[(FSO)(n-CFSO)N]-Based Ether Electrolyte for Superior Stability of Metallic Lithium Anode. <i>ACS Applied Materials & Discrete Stability</i> (1997) 100 Novel Concentrated Lithium Anode. <i>ACS Applied Materials & Discrete Stability</i> (1997) 100 Novel Concentrated Lithium Anode. <i>ACS Applied Materials & Discrete Stability</i> (1997) 100 Novel Concentrated Lithium Anode. <i>ACS Applied Materials & Discrete Stability</i> (1997) 100 Novel Concentrated Lithium Anode. <i>ACS Applied Materials & Discrete Stability</i> (1997) 100 Novel Concentrated Lithium Anode. <i>ACS Applied Materials & Discrete Stability</i> (1997) 100 Novel Concentrated Lithium Anode. <i>ACS Applied Materials & Discrete Stability</i> (1997) 100 Novel Concentrated Lithium Anode. <i>ACS Applied Materials & Discrete Stability</i> (1997) 100 Novel Concentrated Lithium Anode. <i>ACS Applied Materials & Discrete Stability</i> (1997) 100 Novel Concentrated Lithium Anode. <i>ACS Applied Materials & Discrete Stability</i> (1997) 100 Novel Concentrated Lithium Anode. <i>ACS Applied Materials & Discrete Stability</i> (1997) 100 Novel Concentrated Lithium Anode. <i>ACS Applied Materials & Discrete Stability</i> (1997) 100 Novel Concentrated Lithium Anode. <i>ACS Applied Materials</i> (1997) 100 Novel Concentrated Lithium Anode. <i>ACS Applied Materials</i> (1997) 100 Novel Concentrated Lithium Anode. <i>ACS Applied Materials</i> (1997) 100 Novel Concentrated Lithium Anode. <i>ACS Applied Materials</i> (1997) 100 Novel Concentrated Lithium Anode. <i>ACS Applied Materials</i> (1997) 100 Novel Concentrated Lithium Anode. <i>ACS Applied Materials</i> (1997) 100 Novel Concentrated Lithium Anode. <i>ACS Applied Materials</i> (1997) 100 Novel Concentrated Lithium Anode. <i>ACS Applied Materials</i> (1997) 100 Novel Concentrated Lithium Anode. <i>ACS Applied Materials</i> (1997) 100 Novel Concentrated Lithium Anode. <i>ACS Applied Materials</i> (1997) 100 Novel Concentrated Lithium Anode. <i>ACS Applied Materials</i> (1997) 100 Novel Concentrated Lithium Anode. <i>ACS Applied Materials</i> (1997) 100 Novel Concentrated Lithium Anode. <i>ACS Applied Materials</i> (1	9.5	49
2 90	A Rechargeable Li-Air Fuel Cell Battery Based on Garnet Solid Electrolytes. <i>Scientific Reports</i> , 2017 , 7, 41217	4.9	49
289	In Situ Atomic-Scale Observation of Electrochemical Delithiation Induced Structure Evolution of LiCoO Cathode in a Working All-Solid-State Battery. <i>Journal of the American Chemical Society</i> , 2017 , 139, 4274-4277	16.4	109
288	Structural stability and Li-ion transport property of LiFePO4 under high-pressure. <i>Solid State Ionics</i> , 2017 , 301, 133-137	3.3	17
287	Quantitative structure-property relationship study of cathode volume changes in lithium ion batteries using ab-initio and partial least squares analysis. <i>Journal of Materiomics</i> , 2017 , 3, 178-183	6.7	22
286	Anisotropic electron-phonon coupling in the spinel oxide superconductor LiTi2O4. <i>Physical Review B</i> , 2017 , 95,	3.3	10
285	A class of liquid anode for rechargeable batteries with ultralong cycle life. <i>Nature Communications</i> , 2017 , 8, 14629	17.4	61
284	Atomic-Scale Structure-Property Relationships in Lithium Ion Battery Electrode Materials. <i>Annual Review of Materials Research</i> , 2017 , 47, 175-198	12.8	21
283	Forty years of research on solid metallic lithium batteries: an interview with Liquan Chen. <i>National Science Review</i> , 2017 , 4, 106-110	10.8	2
282	In situ Visualization of State-of-Charge Heterogeneity within a LiCoO2 Particle that Evolves upon Cycling at Different Rates. <i>ACS Energy Letters</i> , 2017 , 2, 1240-1245	20.1	115
281	Decomposing lithium carbonate with a mobile catalyst. <i>Nano Energy</i> , 2017 , 36, 390-397	17.1	46
280	Poly(ethyl Eyanoacrylate)-Based Artificial Solid Electrolyte Interphase Layer for Enhanced Interface Stability of Li Metal Anodes. <i>Chemistry of Materials</i> , 2017 , 29, 4682-4689	9.6	150
279	A new Na[(FSO2)(n-C4F9SO2)N]-based polymer electrolyte for solid-state sodium batteries. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 7738-7743	13	55

278	The long life-span of a Li-metal anode enabled by a protective layer based on the pyrolyzed N-doped binder network. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 9339-9349	13	39
277	Novel Methods for Sodium-Ion Battery Materials. <i>Small Methods</i> , 2017 , 1, 1600063	12.8	70
276	A Well-Defined Silicon Nanocone-Carbon Structure for Demonstrating Exclusive Influences of Carbon Coating on Silicon Anode of Lithium-Ion Batteries. <i>ACS Applied Materials & Carbon Structure for Demonstrating Exclusive Influences of Carbon Coating on Silicon Anode of Lithium-Ion Batteries. ACS Applied Materials & Camp; Interfaces, 2017</i> , 9, 2806-2814	9.5	24
275	Recent advances of electrode materials for low-cost sodium-ion batteries towards practical application for grid energy storage. <i>Energy Storage Materials</i> , 2017 , 7, 130-151	19.4	351
274	High-capacity lithium-rich cathode oxides with multivalent cationic and anionic redox reactions for lithium ion batteries. <i>Science China Chemistry</i> , 2017 , 60, 1483-1493	7.9	21
273	First-principles insight into the structural fundamental of super ionic conducting in NASICON MTi2(PO4)3 (M = Li, Na) materials for rechargeable batteries. <i>Nano Energy</i> , 2017 , 41, 626-633	17.1	48
272	Atomic-Scale Monitoring of Electrode Materials in Lithium-Ion Batteries using In Situ Transmission Electron Microscopy. <i>Advanced Energy Materials</i> , 2017 , 7, 1700709	21.8	44
271	Correlations between Transition-Metal Chemistry, Local Structure, and Global Structure in Li2Ru0.5Mn0.5O3 Investigated in a Wide Voltage Window. <i>Chemistry of Materials</i> , 2017 , 29, 9053-9065	9.6	28
270	Al2O3 surface coating on LiCoO2 through a facile and scalable wet-chemical method towards high-energy cathode materials withstanding high cutoff voltages. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 24361-24370	13	89
269	Gas treatment protection of metallic lithium anode. <i>Chinese Physics B</i> , 2017 , 26, 088202	1.2	3
		± _	
268	Data mining-aided materials discovery and optimization. <i>Journal of Materiomics</i> , 2017 , 3, 191-201	6.7	41
268 267	Data mining-aided materials discovery and optimization. <i>Journal of Materiomics</i> , 2017 , 3, 191-201 A low cost composite quasi-solid electrolyte of LATP, TEGDME, and LiTFSI for rechargeable lithium batteries. <i>Chinese Physics B</i> , 2017 , 26, 068201		
	A low cost composite quasi-solid electrolyte of LATP, TEGDME, and LiTFSI for rechargeable lithium	6.7	41
267	A low cost composite quasi-solid electrolyte of LATP, TEGDME, and LiTFSI for rechargeable lithium batteries. <i>Chinese Physics B</i> , 2017 , 26, 068201 Finding a Needle in the Haystack: Identification of Functionally Important Minority Phases in an	6.7	41
267 266	A low cost composite quasi-solid electrolyte of LATP, TEGDME, and LiTFSI for rechargeable lithium batteries. <i>Chinese Physics B</i> , 2017 , 26, 068201 Finding a Needle in the Haystack: Identification of Functionally Important Minority Phases in an Operating Battery. <i>Nano Letters</i> , 2017 , 17, 7782-7788 Na3.4Zr1.8Mg0.2Si2PO12 filled poly(ethylene oxide)/Na(CF3SO2)2N as flexible composite polymer	6.7 1.2 11.5	41 8 33
267 266 265	A low cost composite quasi-solid electrolyte of LATP, TEGDME, and LiTFSI for rechargeable lithium batteries. <i>Chinese Physics B</i> , 2017 , 26, 068201 Finding a Needle in the Haystack: Identification of Functionally Important Minority Phases in an Operating Battery. <i>Nano Letters</i> , 2017 , 17, 7782-7788 Na3.4Zr1.8Mg0.2Si2PO12 filled poly(ethylene oxide)/Na(CF3SO2)2N as flexible composite polymer electrolyte for solid-state sodium batteries. <i>Journal of Power Sources</i> , 2017 , 372, 270-275 Conductivity and applications of Li-biphenyl-1,2-dimethoxyethane solution for lithium ion batteries.	6.7 1.2 11.5 8.9	41 8 33 48
267266265264	A low cost composite quasi-solid electrolyte of LATP, TEGDME, and LiTFSI for rechargeable lithium batteries. <i>Chinese Physics B</i> , 2017 , 26, 068201 Finding a Needle in the Haystack: Identification of Functionally Important Minority Phases in an Operating Battery. <i>Nano Letters</i> , 2017 , 17, 7782-7788 Na3.4Zr1.8Mg0.2Si2PO12 filled poly(ethylene oxide)/Na(CF3SO2)2N as flexible composite polymer electrolyte for solid-state sodium batteries. <i>Journal of Power Sources</i> , 2017 , 372, 270-275 Conductivity and applications of Li-biphenyl-1,2-dimethoxyethane solution for lithium ion batteries. <i>Chinese Physics B</i> , 2017 , 26, 078201 Oxysulfide LiAlSO: A Lithium Superionic Conductor from First Principles. <i>Physical Review Letters</i> ,	6.7 1.2 11.5 8.9	41 8 33 48 8

260	Side-by-side observation of the interfacial improvement of vertical graphene-coated silicon nanocone anodes for lithium-ion batteries by patterning technology. <i>Nanoscale</i> , 2017 , 9, 17241-17247	7.7	9
259	Toxicity, a serious concern of thermal runaway from commercial Li-ion battery. <i>Nano Energy</i> , 2016 , 27, 313-319	17.1	103
258	Advanced sodium-ion batteries using superior low cost pyrolyzed anthracite anode: towards practical applications. <i>Energy Storage Materials</i> , 2016 , 5, 191-197	19.4	173
257	Structural integrityBearching the key factor to suppress the voltage fade of Li-rich layered cathode materials through 3D X-ray imaging and spectroscopy techniques. <i>Nano Energy</i> , 2016 , 28, 164-	177.1	36
256	Toothpaste-like Electrode: A Novel Approach to Optimize the Interface for Solid-State Sodium-Ion Batteries with Ultralong Cycle Life. <i>ACS Applied Materials & Description</i> (2016), 8, 32631-32636	9.5	49
255	Amorphous Li2O2: Chemical Synthesis and Electrochemical Properties. <i>Angewandte Chemie</i> , 2016 , 128, 10875-10879	3.6	28
254	Phase Separation of Li2S/S at Nanoscale during Electrochemical Lithiation of the Solid-State LithiumBulfur Battery Using In Situ TEM. <i>Advanced Energy Materials</i> , 2016 , 6, 1600806	21.8	51
253	Concentrated dual-salt electrolytes for improving the cycling stability of lithium metal anodes. <i>Chinese Physics B</i> , 2016 , 25, 078203	1.2	22
252	A waste biomass derived hard carbon as a high-performance anode material for sodium-ion batteries. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 13046-13052	13	183
251	Mitigating Voltage Decay of Li-Rich Cathode Material via Increasing Ni Content for Lithium-Ion Batteries. <i>ACS Applied Materials & Acs Applied & Acs Applied</i>	9.5	151
250	High-Energy All-Solid-State Lithium Batteries with Ultralong Cycle Life. Nano Letters, 2016, 16, 7148-71	54 1.5	243
249	Impact of Anionic Structure of Lithium Salt on the Cycling Stability of Lithium-Metal Anode in Li-S Batteries. <i>Journal of the Electrochemical Society</i> , 2016 , 163, A1776-A1783	3.9	31
248	Single Lithium-Ion Conducting Polymer Electrolytes Based on a Super-Delocalized Polyanion. <i>Angewandte Chemie</i> , 2016 , 128, 2567-2571	3.6	21
247	Lithium-ion transport in inorganic solid state electrolyte. <i>Chinese Physics B</i> , 2016 , 25, 018211	1.2	45
246	Synthesis and ionic transport mechanisms of ŁiAlO2. <i>Solid State Ionics</i> , 2016 , 286, 122-134	3.3	26
245	Impact of the functional group in the polyanion of single lithium-ion conducting polymer electrolytes on the stability of lithium metal electrodes. <i>RSC Advances</i> , 2016 , 6, 32454-32461	3.7	61
244	Mixed-Phase TiO2 Nanomaterials as Efficient Photocatalysts. <i>Nanoscience and Technology</i> , 2016 , 423-46	50 .6	10
243	A superior low-cost amorphous carbon anode made from pitch and lignin for sodium-ion batteries. Journal of Materials Chemistry A, 2016 , 4, 96-104	13	250

(2015-2016)

242	Pitch-derived amorphous carbon as high performance anode for sodium-ion batteries. <i>Energy Storage Materials</i> , 2016 , 2, 139-145	19.4	203
241	Improved Cycling Stability of Lithium-Metal Anode with Concentrated Electrolytes Based on Lithium (Fluorosulfonyl)(trifluoromethanesulfonyl)imide. <i>ChemElectroChem</i> , 2016 , 3, 531-536	4.3	60
240	Single Lithium-Ion Conducting Polymer Electrolytes Based on a Super-Delocalized Polyanion. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 2521-5	16.4	322
239	Oxygen-driven transition from two-dimensional to three-dimensional transport behaviour in Li3PS4 electrolyte. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 21269-77	3.6	46
238	Forming solid electrolyte interphase in situ in an ionic conducting Li 1.5 Al 0.5 Ge 1.5 (PO 4) 3 -polypropylene (PP) based separator for Li-ion batteries. <i>Chinese Physics B</i> , 2016 , 25, 078204	1.2	20
237	Brief overview of electrochemical potential in lithium ion batteries. <i>Chinese Physics B</i> , 2016 , 25, 018210	1.2	49
236	Novel 1.5 V anode materials, ATiOPO4 (A = NH4, K, Na), for room-temperature sodium-ion batteries. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 7141-7147	13	26
235	Flexible and ion-conducting membrane electrolytes for solid-state lithium batteries: Dispersion of garnet nanoparticles in insulating polyethylene oxide. <i>Nano Energy</i> , 2016 , 28, 447-454	17.1	449
234	Si micropyramid patterned anodes that can suppress fracture and solid electrolyte interface formation during electrochemical cycling. <i>Journal of Power Sources</i> , 2016 , 329, 372-378	8.9	8
233	Explore the Effects of Microstructural Defects on Voltage Fade of Li- and Mn-Rich Cathodes. <i>Nano Letters</i> , 2016 , 16, 5999-6007	11.5	55
232	Novel Li[(CFSO)(n-CFSO)N]-Based Polymer Electrolytes for Solid-State Lithium Batteries with Superior Electrochemical Performance. <i>ACS Applied Materials & Description of the Electrochemical Performance and ACS Applied Materials & Description of the Electrochemical Performance and Description of the Electrochemi</i>	9.5	67
231	A ceramic/polymer composite solid electrolyte for sodium batteries. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 15823-15828	13	108
230	Amorphous Li2 O2 : Chemical Synthesis and Electrochemical Properties. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 10717-21	16.4	106
229	High-Rate Charging Induced Intermediate Phases and Structural Changes of Layer-Structured Cathode for Lithium-Ion Batteries. <i>Advanced Energy Materials</i> , 2016 , 6, 1600597	21.8	84
228	Sodium Bis(fluorosulfonyl)imide/Poly(ethylene oxide) Polymer Electrolytes for Sodium-Ion Batteries. <i>ChemElectroChem</i> , 2016 , 3, 1741-1745	4.3	52
227	Novel Large-Scale Synthesis of a C/S Nanocomposite with Mixed Conducting Networks through a Spray Drying Approach for Liß Batteries. <i>Advanced Energy Materials</i> , 2015 , 5, 1500046	21.8	92
226	Layered and Spinel Structural Cathodes. <i>Green Energy and Technology</i> , 2015 , 67-92	0.6	О
225	Silicon-based nanosheets synthesized by a topochemical reaction for use as anodes for lithium ion batteries. <i>Nano Research</i> , 2015 , 8, 2654-2662	10	78

224	Probing Reversible Multielectron Transfer and Structure Evolution of Li1.2Cr0.4Mn0.4O2 Cathode Material for Li-Ion Batteries in a Voltage Range of 1.04.8 V. <i>Chemistry of Materials</i> , 2015 , 27, 5238-5252	9.6	49
223	A spray drying approach for the synthesis of a Na2C6H2O4/CNT nanocomposite anode for sodium-ion batteries. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 13193-13197	13	56
222	Ti-substituted tunnel-type Nal MnOlbxide as a negative electrode for aqueous sodium-ion batteries. <i>Nature Communications</i> , 2015 , 6, 6401	17.4	265
221	Thick solid electrolyte interphases grown on silicon nanocone anodes during slow cycling and their negative effects on the performance of Li-ion batteries. <i>Nanoscale</i> , 2015 , 7, 7651-8	7.7	36
220	Discrete Li-occupation versus pseudo-continuous Na-occupation and their relationship with structural change behaviors in Fe2(MoO4)3. <i>Scientific Reports</i> , 2015 , 5, 8810	4.9	34
219	Unraveling the storage mechanism in organic carbonyl electrodes for sodium-ion batteries. <i>Science Advances</i> , 2015 , 1, e1500330	14.3	138
218	Doping the Li4Ti5O12 lattice with extra-large anions. <i>Materials Express</i> , 2015 , 5, 457-462	1.3	11
217	Candidate structures for inorganic lithium solid-state electrolytes identified by high-throughput bond-valence calculations. <i>Journal of Materiomics</i> , 2015 , 1, 325-332	6.7	42
216	ReviewNano-Silicon/Carbon Composite Anode Materials Towards Practical Application for Next Generation Li-Ion Batteries. <i>Journal of the Electrochemical Society</i> , 2015 , 162, A2509-A2528	3.9	229
215	Instability of lithium bis(fluorosulfonyl)imide (LiFSI)potassium bis(fluorosulfonyl)imide (KFSI) system with LiCoO 2 at high voltage. <i>Chinese Physics B</i> , 2015 , 24, 078201	1.2	9
214	A long-life Na-air battery based on a soluble NaI catalyst. <i>Chemical Communications</i> , 2015 , 51, 2324-7	5.8	47
213	Amorphous monodispersed hard carbon micro-spherules derived from biomass as a high performance negative electrode material for sodium-ion batteries. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 71-77	13	347
212	Direct Observation of Ordered Oxygen Defects on the Atomic Scale in Li2O2 for Li-O2 Batteries. <i>Advanced Energy Materials</i> , 2015 , 5, 1400664	21.8	28
211	Direct evidence of gradient Mn(II) evolution at charged states in LiNi0.5Mn1.5O4 electrodes with capacity fading. <i>Journal of Power Sources</i> , 2015 , 273, 1120-1126	8.9	99
210	Air-Stable Copper-Based P2-NaCuFeMnO as a New Positive Electrode Material for Sodium-Ion Batteries. <i>Advanced Science</i> , 2015 , 2, 1500031	13.6	218
209	High-throughput design and optimization of fast lithium ion conductors by the combination of bond-valence method and density functional theory. <i>Scientific Reports</i> , 2015 , 5, 14227	4.9	88
208	Safety-Reinforced Poly(Propylene Carbonate)-Based All-Solid-State Polymer Electrolyte for Ambient-Temperature Solid Polymer Lithium Batteries. <i>Advanced Energy Materials</i> , 2015 , 5, 1501082	21.8	391
207	Prototype Sodium-Ion Batteries Using an Air-Stable and Co/Ni-Free O3-Layered Metal Oxide Cathode. <i>Advanced Materials</i> , 2015 , 27, 6928-33	24	398

206	A Novel High Capacity Positive Electrode Material with Tunnel-Type Structure for Aqueous Sodium-Ion Batteries. <i>Advanced Energy Materials</i> , 2015 , 5, 1501005	21.8	127	
205	Fe-Based Tunnel-Type Na0.61[Mn0.27Fe0.34Ti0.39]O2 Designed by a New Strategy as a Cathode Material for Sodium-Ion Batteries. <i>Advanced Energy Materials</i> , 2015 , 5, 1501156	21.8	100	
204	Atomic insight into electrochemical inactivity of lithium chromate (LiCrO2): Irreversible migration of chromium into lithium layers in surface regions. <i>Journal of Power Sources</i> , 2015 , 273, 1218-1225	8.9	35	
203	Enhanced electrochemical performance of SiŒuŒi thin films by surface covered with Cu 3 Si nanowires. <i>Journal of Power Sources</i> , 2015 , 281, 455-460	8.9	20	
202	New insight into the atomic-scale bulk and surface structure evolution of Li4Ti5O12 anode. <i>Journal of the American Chemical Society</i> , 2015 , 137, 1581-6	16.4	89	
201	Atomic-scale structure evolution in a quasi-equilibrated electrochemical process of electrode materials for rechargeable batteries. <i>Advanced Materials</i> , 2015 , 27, 2134-49	24	56	
200	Understanding the Rate Capability of High-Energy-Density Li-Rich Layered Li1.2Ni0.15Co0.1Mn0.55O2 Cathode Materials. <i>Advanced Energy Materials</i> , 2014 , 4, 1300950	21.8	393	
199	Scalable synthesis of interconnected porous silicon/carbon composites by the Rochow reaction as high-performance anodes of lithium ion batteries. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 5165-9	16.4	155	
198	Self-assembly of hierarchical nanostructures from dopamine and polyoxometalate for oral drug delivery. <i>Chemistry - A European Journal</i> , 2014 , 20, 499-504	4.8	63	
197	3D visualization of inhomogeneous multi-layered structure and Young's modulus of the solid electrolyte interphase (SEI) on silicon anodes for lithium ion batteries. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 13229-38	3.6	133	
196	Identifying Li+ ion transport properties of aluminum doped lithium titanium phosphate solid electrolyte at wide temperature range. <i>Solid State Ionics</i> , 2014 , 268, 110-116	3.3	43	
195	Scalable Synthesis of Interconnected Porous Silicon/Carbon Composites by the Rochow Reaction as High-Performance Anodes of Lithium Ion Batteries. <i>Angewandte Chemie</i> , 2014 , 126, 5265-5269	3.6	70	
194	Nanotube LiMoO🛘a novel and high-capacity material as a lithium-ion battery anode. <i>Nanoscale</i> , 2014 , 6, 13660-7	7.7	56	
193	Remarkably Improved Electrode Performance of Bulk MnS by Forming a Solid Solution with FeS Ill Understanding the Li Storage Mechanism. <i>Advanced Functional Materials</i> , 2014 , 24, 5557-5566	15.6	45	
192	Direct imaging of layered O3- and P2-NaxFe1/2Mn1/2O2 structures at the atomic scale. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 21946-52	3.6	40	
191	Rechargeable room-temperature CF(x)-sodium battery. <i>ACS Applied Materials & Description</i> (2014, 6, 2209-12)	9.5	33	
190	Screening possible solid electrolytes by calculating the conduction pathways using Bond Valence method. <i>Science China: Physics, Mechanics and Astronomy</i> , 2014 , 57, 1526-1536	3.6	29	
189	Influences of Additives on the Formation of a Solid Electrolyte Interphase on MnO Electrode Studied by Atomic Force Microscopy and Force Spectroscopy. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 20756-20762	3.8	35	

188	New insight in understanding oxygen reduction and evolution in solid-state lithium-oxygen batteries using an in situ environmental scanning electron microscope. <i>Nano Letters</i> , 2014 , 14, 4245-9	11.5	91
187	Rechargeable Li/CO2D2 (2 : 1) battery and Li/CO2 battery. <i>Energy and Environmental Science</i> , 2014 , 7, 677	35.4	229
186	Nano-sized carboxylates as anode materials for rechargeable lithium-ion batteries. <i>Journal of Energy Chemistry</i> , 2014 , 23, 269-273	12	18
185	A highly reversible, low-strain Mg-ion insertion anode material for rechargeable Mg-ion batteries. <i>NPG Asia Materials</i> , 2014 , 6, e120-e120	10.3	105
184	Effect of electrochemical dissolution and deposition order on lithium dendrite formation: a top view investigation. <i>Faraday Discussions</i> , 2014 , 176, 109-24	3.6	39
183	Size-Dependent Staging and Phase Transition in LiFePO4/FePO4. <i>Advanced Functional Materials</i> , 2014 , 24, 312-318	15.6	45
182	Molten salt of lithium bis(fluorosulfonyl)imide (LiFSI)-potassium bis(fluorosulfonyl)imide (KFSI) as electrolyte for the natural graphite/LiFePO4 lithium-ion cell. <i>Electrochimica Acta</i> , 2014 , 135, 217-223	6.7	21
181	Anticorrosive flexible pyrolytic polyimide graphite film as a cathode current collector in lithium bis(trifluoromethane sulfonyl) imide electrolyte. <i>Electrochemistry Communications</i> , 2014 , 44, 70-73	5.1	11
180	Lithium bis(fluorosulfonyl)imide/poly(ethylene oxide) polymer electrolyte. <i>Electrochimica Acta</i> , 2014 , 133, 529-538	6.7	206
179	Atomic Structure and Kinetics of NASICON NaxV2(PO4)3 Cathode for Sodium-Ion Batteries. <i>Advanced Functional Materials</i> , 2014 , 24, 4265-4272	15.6	245
178	A zero-strain layered metal oxide as the negative electrode for long-life sodium-ion batteries. <i>Nature Communications</i> , 2013 , 4, 2365	17.4	468
177	Effect of Ni doping on the catalytic properties of nanostructured peony-like CeO2. <i>Chinese Journal of Catalysis</i> , 2013 , 34, 305-312	11.3	14
176	Electrochemical performances and volume variation of nano-textured silicon thin films as anodes for lithium-ion batteries. <i>Nanotechnology</i> , 2013 , 24, 424011	3.4	19
175	Temperature-dependent lithium storage behavior in tetragonal boron (B50) thin film anode for Li-ion batteries. <i>Electrochimica Acta</i> , 2013 , 87, 230-235	6.7	7
174	Graphite microspheres decorated with Si particles derived from waste solid of organosilane industry as high capacity anodes for Li-ion batteries. <i>Journal of Power Sources</i> , 2013 , 228, 112-119	8.9	52
173	Improved electrochemical properties of MnO thin film anodes by elevated deposition temperatures: Study of conversion reactions. <i>Electrochimica Acta</i> , 2013 , 89, 229-238	6.7	26
172	Phase transition behavior of NaCrO2 during sodium extraction studied by synchrotron-based X-ray diffraction and absorption spectroscopy. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 11130	13	74
171	Growth of silicon/carbon microrods on graphite microspheres as improved anodes for lithium-ion batteries. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 4483	13	65

(2012-2013)

170	Reversible chemical delithiation/lithiation of LiFePO4: towards a redox flow lithium-ion battery. <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 1793-7	3.6	133
169	A CoOx/carbon double-layer thin film air electrode for nonaqueous Li-air batteries. <i>Journal of Power Sources</i> , 2013 , 223, 312-318	8.9	41
168	High performance MnO thin-film anodes grown by radio-frequency sputtering for lithium ion batteries. <i>Journal of Power Sources</i> , 2013 , 244, 731-735	8.9	31
167	Molten salt electrolyte based on alkali bis(fluorosulfonyl)imides for lithium batteries. <i>Electrochimica Acta</i> , 2013 , 105, 524-529	6.7	13
166	A new class of Solvent-in-Salt electrolyte for high-energy rechargeable metallic lithium batteries. <i>Nature Communications</i> , 2013 , 4, 1481	17.4	1631
165	Preparation and characterization of LiNi0.5Mn1.5O4lthin films taking advantage of correlations with powder samples behavior. <i>Journal of Power Sources</i> , 2013 , 232, 165-172	8.9	19
164	Two-phase electrochemical lithiation in amorphous silicon. <i>Nano Letters</i> , 2013 , 13, 709-15	11.5	336
163	Defect Thermodynamics and Diffusion Mechanisms in Li2CO3 and Implications for the Solid Electrolyte Interphase in Li-Ion Batteries. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 8579-8593	3.8	177
162	A repeated halving approach to fabricate ultrathin single-walled carbon nanotube films for transparent supercapacitors. <i>Small</i> , 2013 , 9, 518-24	11	86
161	Direct atomic-scale confirmation of three-phase storage mechanism in LilliDlanodes for room-temperature sodium-ion batteries. <i>Nature Communications</i> , 2013 , 4, 1870	17.4	577
160	Sodium Storage and Transport Properties in Layered Na2Ti3O7 for Room-Temperature Sodium-Ion Batteries. <i>Advanced Energy Materials</i> , 2013 , 3, 1186-1194	21.8	401
159	Amorphous silicon-carbon nanospheres synthesized by chemical vapor deposition using cheap methyltrichlorosilane as improved anode materials for Li-ion batteries. <i>Nanoscale</i> , 2013 , 5, 5384-9	7.7	40
158	Atomic Structure of Li2MnO3 after Partial Delithiation and Re-Lithiation. <i>Advanced Energy Materials</i> , 2013 , 3, 1358-1367	21.8	176
157	Nanovoid formation and annihilation in gallium nanodroplets under lithiation-delithiation cycling. <i>Nano Letters</i> , 2013 , 13, 5212-7	11.5	73
156	Carbon coated Na3V2(PO4)3 as novel electrode material for sodium ion batteries. <i>Electrochemistry Communications</i> , 2012 , 14, 86-89	5.1	596
155	Electronic states of metal (Cu, Ag, Au) atom on CeO2(111) surface: The role of local structural distortion. <i>Journal of Power Sources</i> , 2012 , 197, 28-37	8.9	41
154	Investigation of crack patterns and cyclic performance of TiBi nanocomposite thin film anodes for lithium ion batteries. <i>Journal of Power Sources</i> , 2012 , 202, 236-245	8.9	63
153	Phase transformation and lithiation effect on electronic structure of Li(x)FePO4: an in-depth study by soft X-ray and simulations. <i>Journal of the American Chemical Society</i> , 2012 , 134, 13708-15	16.4	121

152	High rate delithiation behaviour of LiFePO4 studied by quick X-ray absorption spectroscopy. <i>Chemical Communications</i> , 2012 , 48, 11537-9	5.8	50
151	The low-temperature (400 °C) coating of few-layer graphene on porous Li4Ti5O12viaC28H16Br2 pyrolysis for lithium-ion batteries. <i>RSC Advances</i> , 2012 , 2, 1751	3.7	39
150	Rutile-TiO2 nanocoating for a high-rate Li4Ti5O12 anode of a lithium-ion battery. <i>Journal of the American Chemical Society</i> , 2012 , 134, 7874-9	16.4	551
149	Direct observation of inhomogeneous solid electrolyte interphase on MnO anode with atomic force microscopy and spectroscopy. <i>Nano Letters</i> , 2012 , 12, 2153-7	11.5	144
148	Nanostructured ceria-based materials: synthesis, properties, and applications. <i>Energy and Environmental Science</i> , 2012 , 5, 8475	35.4	851
147	Shape evolution of patterned amorphous and polycrystalline silicon microarray thin film electrodes caused by lithium insertion and extraction. <i>Journal of Power Sources</i> , 2012 , 216, 131-138	8.9	104
146	Electrochemical decomposition of Li2CO3 in NiOIi2CO3 nanocomposite thin film and powder electrodes. <i>Journal of Power Sources</i> , 2012 , 218, 113-118	8.9	81
145	Electrochemical properties and interfacial reactions of LiNi0.5Mn1.5O4[hanorods. <i>Progress in Natural Science: Materials International</i> , 2012 , 22, 207-212	3.6	10
144	Facile Solvothermal Synthesis of Phase-Pure Cu4O3 Microspheres and Their Lithium Storage Properties. <i>Chemistry of Materials</i> , 2012 , 24, 1136-1142	9.6	43
143	Direct calculation of Li-ion transport in the solid electrolyte interphase. <i>Journal of the American Chemical Society</i> , 2012 , 134, 15476-87	16.4	381
142	Density Functional Investigation on Li2MnO3. <i>Chemistry of Materials</i> , 2012 , 24, 4242-4251	9.6	200
141	First-principles investigation of transition metal atom M (M = Cu, Ag, Au) adsorption on CeO2(110). <i>Physical Chemistry Chemical Physics</i> , 2012 , 14, 1923-33	3.6	47
140	A novel assembly of LiFePO4 microspheres from nanoplates. <i>CrystEngComm</i> , 2012 , 14, 4344	3.3	24
139	New insight into the atomic structure of electrochemically delithiated O3-Li(Ek)CoO[[0 Ek ID.5) nanoparticles. <i>Nano Letters</i> , 2012 , 12, 6192-7	11.5	108
138	Si-Cu Thin Film Electrode with Kirkendall Voids Structure for Lithium-Ion Batteries. <i>Journal of the Electrochemical Society</i> , 2012 , 159, A2076-A2081	3.9	23
137	Kinetically Controlled Lithium-Staging in Delithiated LiFePO4 Driven by the Fe Center Mediated Interlayer Lilli Interactions. <i>Chemistry of Materials</i> , 2012 , 24, 4693-4703	9.6	54
136	Highly ordered staging structural interface between LiFePO4 and FePO4. <i>Physical Chemistry Chemical Physics</i> , 2012 , 14, 5363-7	3.6	52
135	Lithium storage in Li4Ti5O12 spinel: the full static picture from electron microscopy. <i>Advanced Materials</i> , 2012 , 24, 3233-8	24	255

(2011-2012)

134	Disodium Terephthalate (Na2C8H4O4) as High Performance Anode Material for Low-Cost Room-Temperature Sodium-Ion Battery. <i>Advanced Energy Materials</i> , 2012 , 2, 962-965	21.8	437
133	Improved Li-storage performance of Li4Ti5O12 coated with C-N compounds derived from pyrolysis of urea through a low-temperature approach. <i>ChemSusChem</i> , 2012 , 5, 526-9	8.3	50
132	Erratum to Bpinel lithium titanate (Li 4 Ti 5 O 12) as novel anode material for room-temperature sodium-ion battery". <i>Chinese Physics B</i> , 2012 , 21, 079901	1.2	10
131	Spinel lithium titanate (Li 4 Ti 5 O 12) as novel anode material for room-temperature sodium-ion battery. <i>Chinese Physics B</i> , 2012 , 21, 028201	1.2	107
130	A new in situ synchrotron X-ray diffraction technique to study the chemical delithiation of LiFePO4. <i>Chemical Communications</i> , 2011 , 47, 7170-2	5.8	33
129	Thermodynamic analysis on energy densities of batteries. <i>Energy and Environmental Science</i> , 2011 , 4, 2614	35.4	634
128	Direct observation of lithium staging in partially delithiated LiFePO4 at atomic resolution. <i>Journal of the American Chemical Society</i> , 2011 , 133, 4661-3	16.4	200
127	Compact-designed supercapacitors using free-standing single-walled carbon nanotube films. <i>Energy and Environmental Science</i> , 2011 , 4, 1440	35.4	287
126	Nanostructured Diamond Like Carbon Thin Film Electrodes for Lithium Air Batteries. <i>Journal of the Electrochemical Society</i> , 2011 , 158, B1211	3.9	42
125	Anomalous lithium storage in a novel nanonet composed by SnO2 nanoparticles and poly(ethylene glycol) chains. <i>Journal of Materials Chemistry</i> , 2011 , 21, 2845		4
124	Transport and Electrochemical Properties and Spectral Features of Non-Aqueous Electrolytes Containing LiFSI in Linear Carbonate Solvents. <i>Journal of the Electrochemical Society</i> , 2011 , 158, A74	3.9	107
123	Enhanced activity and stability of Cu-Mn and Cu-Ag catalysts supported on nanostructured mesoporous CeO2 for CO oxidation. <i>Journal of Nanoscience and Nanotechnology</i> , 2011 , 11, 1923-8	1.3	5
122	High capacity Sb2O4 thin film electrodes for rechargeable sodium battery. <i>Electrochemistry Communications</i> , 2011 , 13, 1462-1464	5.1	169
121	A comparative study of Fd-3m and P4332 liNi0.5Mn1.5O4ll Solid State Ionics, 2011, 193, 32-38	3.3	271
120	Porous Li4 Ti5 O12 coated with N-doped carbon from ionic liquids for Li-ion batteries. <i>Advanced Materials</i> , 2011 , 23, 1385-8	24	692
119	Alumina-coated patterned amorphous silicon as the anode for a lithium-ion battery with high coulombic efficiency. <i>Advanced Materials</i> , 2011 , 23, 4938-41	24	348
119		24	348 54

116	Kinetic analysis on LiFePO4 thin films by CV, GITT, and EIS. <i>Electrochimica Acta</i> , 2011 , 56, 4869-4875	6.7	318
115	Morphological and catalytic stability of mesoporous peony-like ceria. <i>Microporous and Mesoporous Materials</i> , 2011 , 142, 202-207	5.3	11
114	Investigation on porous MnO microsphere anode for lithium ion batteries. <i>Journal of Power Sources</i> , 2011 , 196, 6802-6808	8.9	198
113	Electrochemical performances of LiFe1MnxPO4 with high Mn content. <i>Journal of Power Sources</i> , 2011 , 196, 6992-6996	8.9	45
112	Lithium bis(fluorosulfonyl)imide (LiFSI) as conducting salt for nonaqueous liquid electrolytes for lithium-ion batteries: Physicochemical and electrochemical properties. <i>Journal of Power Sources</i> , 2011 , 196, 3623-3632	8.9	307
111	Direct Imaging of Lithium Ions Using Aberration-Corrected Annular-Bright-Field Scanning Transmission Electron Microscopy and Associated Contrast Mechanisms. <i>Materials Express</i> , 2011 , 1, 43-	5 ð ·3	18
110	Significant effect of electron transfer between current collector and active material on high rate performance of Li 4 Ti 5 O 12. <i>Chinese Physics B</i> , 2011 , 20, 118202	1.2	23
109	Enhanced Electrochemical Performances of Carbon Coated Mesoporous LiFe[sub 0.2]Mn[sub 0.8]PO[sub 4]. <i>Journal of the Electrochemical Society</i> , 2010 , 157, A285	3.9	27
108	Electrochromic Behavior of Transparent Li[sub 4]Ti[sub 5]O[sub 12]/FTO Electrode. <i>Electrochemical and Solid-State Letters</i> , 2010 , 13, J99		20
107	First-principles investigation on redox properties of M-doped CeO2 (M=Mn,Pr,Sn,Zr). <i>Physical Review B</i> , 2010 , 82,	3.3	100
106	Non-sacrificial template synthesis of Cr2O3t hierarchical core/shell nanospheres and their application as anode materials in lithium-ion batteries. <i>Journal of Materials Chemistry</i> , 2010 , 20, 7565		62
105	Non-Corrosive, Non-Absorbing Organic Redox Couple for Dye-Sensitized Solar Cells. <i>Advanced Functional Materials</i> , 2010 , 20, 3358-3365	15.6	101
104	MnO powder as anode active materials for lithium ion batteries. <i>Journal of Power Sources</i> , 2010 , 195, 3300-3308	8.9	322
103	H2 production from stable ethanol steam reforming over catalyst of NiO based on flowerlike CeO2 microspheres. <i>International Journal of Hydrogen Energy</i> , 2010 , 35, 3087-3091	6.7	22
102	Flowerlike microspheres catalyst NiO/La2O3 for ethanol-H2 production. <i>International Journal of Hydrogen Energy</i> , 2010 , 35, 11687-11692	6.7	7
101	The effects of substituting groups in cyclic carbonates for stable SEI formation on graphite anode of lithium batteries. <i>Electrochemistry Communications</i> , 2010 , 12, 386-389	5.1	46
100	Ionic liquid electrolytes based on multi-methoxyethyl substituted ammoniums and perfluorinated sulfonimides: Preparation, characterization, and properties. <i>Electrochimica Acta</i> , 2010 , 55, 7134-7144	6.7	78
99	Ionic liquids based on (fluorosulfonyl)(pentafluoroethanesulfonyl)imide with various oniums.	6.7	59

(2008-2010)

98	A series of LiI/acetamide phase transition electrolytes and their applications in dye-sensitized solar cells. <i>Electrochimica Acta</i> , 2010 , 55, 895-902	6.7	15
97	A Novel Flowerlike Nanostructured CeO2for Sustainable Energies. <i>Journal of the Korean Ceramic Society</i> , 2010 , 47, 66-70	2.2	2
96	Research on Advanced Materials for Li-ion Batteries. Advanced Materials, 2009, 21, 4593-4607	24	1459
95	Studies on Composite Cathode with Nanostructured Ce0.9Sm0.1O1.95 for Intermediate Temperature Solid Oxide Fuel Cells. <i>Fuel Cells</i> , 2009 , 9, 650-656	2.9	14
94	TG-MS analysis on thermal decomposable components in the SEI film on Cr2O3 powder anode in Li-ion batteries. <i>Ionics</i> , 2009 , 15, 91-96	2.7	26
93	Synthesis and separation of mellitic acid and graphite oxide colloid through electrochemical oxidation of graphite in deionized water. <i>Electrochemistry Communications</i> , 2009 , 11, 409-412	5.1	21
92	Nanocrystalline MnO thin film anode for lithium ion batteries with low overpotential. <i>Electrochemistry Communications</i> , 2009 , 11, 791-794	5.1	164
91	A pentafluorophenylboron oxalate additive in non-aqueous electrolytes for lithium batteries. <i>Electrochemistry Communications</i> , 2009 , 11, 2296-2299	5.1	28
90	Needle-like LiFePO4 thin films prepared by an off-axis pulsed laser deposition technique. <i>Thin Solid Films</i> , 2009 , 517, 2618-2622	2.2	27
89	A preliminary study on a new LiBOB/acetamide solid phase transition electrolyte. <i>Solid State Ionics</i> , 2009 , 180, 688-692	3.3	7
88	Synthesis of doped ceria with mesoporous flowerlike morphology and its catalytic performance for CO oxidation. <i>Microporous and Mesoporous Materials</i> , 2009 , 120, 426-431	5.3	88
87	Electrochemical performance of LiFePO4 thin films with different morphology and crystallinity. <i>Electrochimica Acta</i> , 2009 , 54, 6565-6569	6.7	36
86	In situ X-ray absorption and diffraction studies of carbon coated LiFe1/4Mn1/4Co1/4Ni1/4PO4 cathode during first charge. <i>Electrochemistry Communications</i> , 2009 , 11, 913-916	5.1	45
85	Reversible lithium storage in LiF/Ti nanocomposites. <i>Physical Chemistry Chemical Physics</i> , 2009 , 11, 9497	′-5.63	55
84	Electrochemical properties of TiO2 hollow microspheres from a template-free and green wet-chemical route. <i>Journal of Power Sources</i> , 2008 , 180, 869-874	8.9	43
83	New electrolytes for lithium ion batteries using LiF salt and boron based anion receptors. <i>Journal of Power Sources</i> , 2008 , 184, 517-521	8.9	65
82	Electronic structural changes of the electrochemically delithiated LiFe0.5Co0.5PO4 cathode material studied by X-ray absorption spectroscopy. <i>Journal of Power Sources</i> , 2008 , 183, 427-430	8.9	16
81	New electrolytes using Li2O or Li2O2 oxides and tris(pentafluorophenyl) borane as boron based anion receptor for lithium batteries. <i>Electrochemistry Communications</i> , 2008 , 10, 1195-1197	5.1	97

80	Li-storage in LiFe1/4Mn1/4Co1/4Ni1/4PO4 solid solution. <i>Electrochemistry Communications</i> , 2008 , 10, 1347-1350	5.1	38
79	Room temperature fabrication of porous ZnO photoelectrodes for flexible dye-sensitized solar cells. <i>Chemical Communications</i> , 2007 , 2847-9	5.8	91
78	First-principles study on electronic structure of LiFePO4. Solid State Communications, 2007, 143, 144-1	48 1.6	15
77	Electrochemical behavior and microstructure variation of hard carbon nano-spherules as anode material for Li-ion batteries. <i>Solid State Ionics</i> , 2007 , 178, 265-271	3.3	80
76	M/Xn (MAl, Mg; XBr, I) batteries based on anion transport mechanism. <i>Electrochemistry Communications</i> , 2007 , 9, 1-5	5.1	10
75	Ion transport in small-molecule electrolytes based on LiI/3-hydroxypropionitrile with high salt contents. <i>Electrochimica Acta</i> , 2007 , 52, 2039-2044	6.7	19
74	Application of carbon materials as counter electrodes of dye-sensitized solar cells. <i>Electrochemistry Communications</i> , 2007 , 9, 596-598	5.1	429
73	Electrochemical and structural studies of the carbon-coated Li[CrxLi(1/3½/3)Ti(2/3½x/3)]O2 (x=0.3, 0.35, 0.4, 0.45). <i>Journal of Power Sources</i> , 2007 , 174, 867-871	8.9	4
72	Mesoscale Organization of Flower-Like La2O2CO3and La2O3 Microspheres. <i>Journal of the American Ceramic Society</i> , 2007 , 90, 2576-2581	3.8	26
71	Study of flowerlike CeO2 microspheres used as catalyst supports for CO oxidation reaction. <i>Journal of Physics and Chemistry of Solids</i> , 2007 , 68, 1785-1790	3.9	95
70	A new route to single crystalline vanadium dioxide nanoflakes via thermal reduction. <i>Journal of Materials Research</i> , 2007 , 22, 1921-1926	2.5	15
69	Improve the electrochemical performances of Cr2O3 anode for lithium ion batteries. <i>Solid State Ionics</i> , 2006 , 177, 2791-2799	3.3	111
68	Highly efficient dye-sensitized solar cells using a composite electrolyte. <i>Comptes Rendus Chimie</i> , 2006 , 9, 627-630	2.7	13
67	A spontaneous combustion reaction for synthesizing Pt hollow capsules using colloidal carbon spheres as templates. <i>Chemistry - A European Journal</i> , 2006 , 12, 4083-90	4.8	51
66	Mesoscale organization of nearly monodisperse flowerlike ceria microspheres. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 13445-52	3.4	223
65	Carbon-Coated Li[sub 1.2]Cr[sub 0.4]Ti[sub 0.4]O[sub 2] Cathode Material for Lithium-Ion Batteries. <i>Electrochemical and Solid-State Letters</i> , 2006 , 9, A324		7
64	Origin of Solid Electrolyte Interphase on Nanosized LiCoO[sub 2]. <i>Electrochemical and Solid-State Letters</i> , 2006 , 9, A328		57
63	Cheap and environmentally benign electrochemical energy storage and conversion devices based on Ali3 electrolytes. <i>Journal of the American Chemical Society</i> , 2006 , 128, 8720-1	16.4	37

(2005-2006)

62	Effect of iodine addition on solid-state electrolyte Lil/3-hydroxypropionitrile (1:4) for dye-sensitized solar cells. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 5970-4	3.4	59
61	Li-biphenyl-1,2-dimethoxyethane solution: calculation and its application. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 10341-7	3.4	13
60	Environmentally friendly Lil/ethanol based gel electrolyte for dye-sensitized solar cells. <i>Electrochemistry Communications</i> , 2006 , 8, 170-172	5.1	31
59	Cage-like carbon nanotubes/Si composite as anode material for lithium ion batteries. <i>Electrochemistry Communications</i> , 2006 , 8, 51-54	5.1	157
58	Investigations of mesoporous CeO2 R u as a reforming catalyst layer for solid oxide fuel cells. <i>Electrochemistry Communications</i> , 2006 , 8, 833-838	5.1	97
57	Synthesis and characterization of Cr8O21 as cathode material for rechargeable lithium batteries. <i>Solid State Ionics</i> , 2006 , 177, 2675-2678	3.3	11
56	Cr[sub 2]O[sub 3]-Based Anode Materials for Li-Ion Batteries. <i>Electrochemical and Solid-State Letters</i> , 2005 , 8, A66		75
55	First-principles investigation of the structural, magnetic, and electronic properties of olivine LiFePO4. <i>Physical Review B</i> , 2005 , 71,	3.3	50
54	Solid-state composite electrolyte LiI/3-hydroxypropionitrile/SiO2 for dye-sensitized solar cells. Journal of the American Chemical Society, 2005 , 127, 6394-401	16.4	166
53	Controlled synthesis of CeO2nanorods by a solvothermal method. <i>Nanotechnology</i> , 2005 , 16, 1454-146.	33.4	287
52	Gas evolution behaviors for several cathode materials in lithium-ion batteries. <i>Journal of Power Sources</i> , 2005 , 142, 285-291	8.9	112
51	Spectroscopic studies on the cation-anion, cation-solvent and anion-solvent interactions in the LiCF3SO3/acetamide complex system. <i>Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy</i> , 2005 , 61, 403-11	4.4	17
50	Spectroscopic and DFT studies to understand the liquid formation mechanism in the LiTFSI/acetamide complex system. <i>Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy</i> , 2005 , 61, 2009-15	4.4	18
49	Improving the rate performance of LiFePO4 by Fe-site doping. <i>Electrochimica Acta</i> , 2005 , 50, 2955-2958	3 6. ₇	311
48	Spectroscopic studies on the mechanism of liquid formation and ionic conductivity in the LiCF3SO3/acetamide complex system. <i>Vibrational Spectroscopy</i> , 2005 , 37, 1-10	2.1	9
47	Influence of micropore structure on Li-storage capacity in hard carbon spherules. <i>Solid State Ionics</i> , 2005 , 176, 1151-1159	3.3	42
46	Synthesis and characterization of large scale potassium titanate nanowires with good Li-intercalation performance. <i>Chemical Physics Letters</i> , 2005 , 406, 95-100	2.5	36
45	Ab initio studies on the stability and electronic structure of LiCoO2 (003) surfaces. <i>Physical Review B</i> , 2005 , 71,	3.3	25

44	Ionic Conductivity and Association Studies of Novel RTMS Electrolyte Based on LiTFSI and Acetamide. <i>Journal of the Electrochemical Society</i> , 2004 , 151, A1424	3.9	15
43	Ab initio molecular-dynamics studies on Li x Mn 2 O 4 as cathode material for lithium secondary batteries. <i>Europhysics Letters</i> , 2004 , 67, 28-34	1.6	53
42	Effect of Morphology and Current Density on the Electrochemical Behavior of Graphite Electrodes in PC-Based Electrolyte Containing VEC Additive. <i>Electrochemical and Solid-State Letters</i> , 2004 , 7, A442		38
41	Experimental and theoretical studies on reduction mechanism of vinyl ethylene carbonate on graphite anode for lithium ion batteries. <i>Electrochemistry Communications</i> , 2004 , 6, 126-131	5.1	134
40	New solid-state synthesis routine and mechanism for LiFePO4 using LiF as lithium precursor. Journal of Solid State Chemistry, 2004 , 177, 4582-4587	3.3	53
39	Novel room temperature molten salt electrolyte based on LiTFSI and acetamide for lithium batteries. <i>Electrochemistry Communications</i> , 2004 , 6, 28-32	5.1	103
38	Li-Storage via Heterogeneous Reaction in Selected Binary Metal Fluorides and Oxides. <i>Journal of the Electrochemical Society</i> , 2004 , 151, A1878	3.9	521
37	An alternative ionic liquid based electrolyte for dye-sensitized solar cells. <i>Photochemical and Photobiological Sciences</i> , 2004 , 3, 918-9	4.2	30
36	Synthesis and Characterization of Polycrystalline CeO2Nanowires. <i>Chemistry Letters</i> , 2004 , 33, 662-663	1.7	108
35	Fully Reversible Homogeneous and Heterogeneous Li Storage in RuO2 with High Capacity. <i>Advanced Functional Materials</i> , 2003 , 13, 621-625	15.6	558
34	Reversible Formation and Decomposition of LiF Clusters Using Transition Metal Fluorides as Precursors and Their Application in Rechargeable Li Batteries. <i>Advanced Materials</i> , 2003 , 15, 736-739	24	306
33	Investigation of Lithium Storage in Bamboo-like CNTs by HRTEM. <i>Journal of the Electrochemical Society</i> , 2003 , 150, A1281	3.9	23
32	Nano-alloy anode for lithium ion batteries. <i>Solid State Ionics</i> , 2002 , 148, 247-258	3.3	139
31	Al2O3-coated LiCoO2 as cathode material for lithium ion batteries. <i>Solid State Ionics</i> , 2002 , 152-153, 341-346	3.3	116
30	Novel spherical microporous carbon as anode material for Li-ion batteries. <i>Solid State Ionics</i> , 2002 , 152-153, 43-50	3.3	185
29	Further identification to the SEI film on Ag electrode in lithium batteries by surface enhanced Raman scattering (SERS). <i>Journal of Power Sources</i> , 2002 , 104, 190-194	8.9	38
28	The study of surface films formed on SnO anode in lithium rechargeable batteries by FTIR spectroscopy. <i>Journal of Power Sources</i> , 2002 , 107, 1-4	8.9	45

(1996-2002)

26	Nanosized SnSb Alloy Pinning on Hard Non-Graphitic Carbon Spherules as Anode Materials for a Li Ion Battery. <i>Chemistry of Materials</i> , 2002 , 14, 103-108	9.6	146
25	Electrochemical performance of Ni-deposited graphite anodes for lithium secondary batteries. <i>Journal of Power Sources</i> , 2001 , 102, 60-67	8.9	24
24	Monodispersed hard carbon spherules with uniform nanopores. <i>Carbon</i> , 2001 , 39, 2211-2214	10.4	572
23	Studies on Capacity Loss and Capacity Fading of Nanosized SnSb Alloy Anode for Li-Ion Batteries. Journal of the Electrochemical Society, 2001 , 148, A915	3.9	181
22	New Binary Room-Temperature Molten Salt Electrolyte Based on Urea and LiTFSI. <i>Journal of Physical Chemistry B</i> , 2001 , 105, 9966-9969	3.4	66
21	Nano-SnSb alloy deposited on MCMB as an anode material for lithium ion batteries. <i>Journal of Materials Chemistry</i> , 2001 , 11, 1502-1505		89
20	Determination of Chemical Diffusion Coefficient of Lithium Ion in Graphitized Mesocarbon Microbeads with Potential Relaxation Technique. <i>Journal of the Electrochemical Society</i> , 2001 , 148, A73	7 ^{3.9}	59
19	Surface enhanced resonance Raman spectroscopy of rhodamine 6G adsorbed on silver electrode in lithium batteries. <i>Chemical Physics Letters</i> , 2000 , 330, 249-254	2.5	43
18	The crystal structural evolution of nano-Si anode caused by lithium insertion and extraction at room temperature. <i>Solid State Ionics</i> , 2000 , 135, 181-191	3.3	363
17	Synthesis and electrochemical performance of dendrite-like nanosized SnSb alloy prepared by co-precipitation in alcohol solution at low temperature. <i>Journal of Materials Chemistry</i> , 2000 , 10, 693-69	96	57
16	Surface-Enhanced Raman Scattering Study on Passivating Films of Ag Electrodes in Lithium Batteries Journal of Physical Chemistry B, 2000 , 104, 8477-8480	3.4	21
15	Electrochemical impedance spectroscopy study of SnO and nano-SnO anodes in lithium rechargeable batteries. <i>Journal of Power Sources</i> , 1999 , 81-82, 340-345	8.9	102
14	The interaction between SnO anode and electrolytes. <i>Journal of Power Sources</i> , 1999 , 81-82, 346-351	8.9	24
13	Structure and electrochemical properties of anodes consisting of modified SnO. <i>Journal of Power Sources</i> , 1999 , 81-82, 335-339	8.9	22
12	Direct Imaging of the Passivating Film and Microstructure of Nanometer-Scale SnO Anodes in Lithium Rechargeable Batteries. <i>Electrochemical and Solid-State Letters</i> , 1999 , 1, 241		70
11	A High Capacity Nano-Si Composite Anode Material for Lithium Rechargeable Batteries. <i>Electrochemical and Solid-State Letters</i> , 1999 , 2, 547		662
10	Studies of Stannic Oxide as an Anode Material for Lithium-Ion Batteries. <i>Journal of the Electrochemical Society</i> , 1998 , 145, 59-62	3.9	134
9	Electrochemical impedance spectroscopic study of the rate-determining step of Li ion intercalation and deintercalation in LixNiO2 cathodes. <i>Ionics</i> , 1996 , 2, 259-265	2.7	8

		Ho	ong Li
8	Doping Strategy and Mechanism for Oxide and Sulfide Solid Electrolytes with High Ionic Conductivity. <i>Journal of Materials Chemistry A</i> ,	13	6
7	Topologically protected oxygen redox in a layered manganese oxide cathode for sustainable batteries. <i>Nature Sustainability</i> ,	22.1	5
6	In Situ Visualization of Li-Whisker with Grating-Interferometry-Based Tricontrast X-ray Microtomograp	hy1786	5-1792
5	High Current Density and Long Cycle Life Enabled by Sulfide Solid Electrolyte and Dendrite-Free Liquid Lithium Anode. <i>Advanced Functional Materials</i> ,2105776	15.6	5
4	LixCu alloy nanowires nested in Ni foam for highly stable Li metal composite anode. <i>Science China Materials</i> ,1	7.1	4
3	Criterion for Identifying Anodes for Practically Accessible High-Energy-Density Lithium-Ion Batteries. <i>ACS Energy Letters</i> ,3719-3724	20.1	13
2	Anomalous Thermal Decomposition Behavior of Polycrystalline LiNi 0.8 Mn 0.1 Co 0.1 O 2 in PEO-Based Solid Polymer Electrolyte. <i>Advanced Functional Materials</i> ,2200096	15.6	2

2.5

Progress in lithium thioborate superionic conductors. Journal of Materials Research,