Augusto C Montezano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6539032/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Exosomes and the cardiovascular system: role in cardiovascular health and disease. Journal of Physiology, 2023, 601, 4923-4936.	1.3	12
2	Central role of c-Src in NOX5- mediated redox signalling in vascular smooth muscle cells in human hypertension. Cardiovascular Research, 2022, 118, 1359-1373.	1.8	26
3	Sex steroids receptors, hypertension, and vascular ageing. Journal of Human Hypertension, 2022, 36, 120-125.	1.0	28
4	Interferon-stimulated gene 15 pathway is a novel mediator of endothelial dysfunction and aneurysms development in angiotensin II infused mice through increased oxidative stress. Cardiovascular Research, 2022, 118, 3250-3268.	1.8	18
5	Arterial Hypertension. , 2022, , .		0
6	Vascular dysfunction and increased cardiovascular risk in hypospadias. European Heart Journal, 2022, 43, 1832-1845.	1.0	16
7	Differential effects of cyclo-oxygenase 1 and 2 inhibition on angiogenesis inhibitor-induced hypertension and kidney damage. Clinical Science, 2022, 136, 675-694.	1.8	6
8	The vascular phenotype in hypertension. , 2022, , 327-342.		0
9	Assessment and pathophysiology of microvascular disease: recent progress and clinical implications. European Heart Journal, 2021, 42, 2590-2604.	1.0	74
10	High sodium intake, glomerular hyperfiltration, and protein catabolism in patients with essential hypertension. Cardiovascular Research, 2021, 117, 1372-1381.	1.8	27
11	ACE2/Ang-(1-7)/Mas1 axis and the vascular system: vasoprotection to COVID-19-associated vascular disease. Clinical Science, 2021, 135, 387-407.	1.8	32
12	Peripheral arteriopathy caused by Notch3 gain-of-function mutation involves ER and oxidative stress and blunting of NO/sGC/cGMP pathway. Clinical Science, 2021, 135, 753-773.	1.8	12
13	Oxidative Stress and Hypertension. Circulation Research, 2021, 128, 993-1020.	2.0	188
14	Cardiovascular and Renal Risk Factors and Complications Associated With COVID-19. CJC Open, 2021, 3, 1257-1272.	0.7	18
15	Lysophosphatidylcholine induces oxidative stress in human endothelial cells via NOX5 activation – implications in atherosclerosis. Clinical Science, 2021, 135, 1845-1858.	1.8	18
16	Selective Inhibition of the C-Domain of ACE (Angiotensin-Converting Enzyme) Combined With Inhibition of NEP (Neprilysin): A Potential New Therapy for Hypertension. Hypertension, 2021, 78, 604-616.	1.3	7
17	Osteoprotegerin regulates vascular function through syndecan-1 and NADPH oxidase-derived reactive oxygen species. Clinical Science, 2021, 135, 2429-2444.	1.8	4
18	Peptides derived from the SARS-CoV-2 receptor binding motif bind to ACE2 but do not block ACE2-mediated host cell entry or pro-inflammatory cytokine induction. PLoS ONE, 2021, 16, e0260283.	1.1	1

#	Article	IF	CITATIONS
19	Selective ETA vs. dual ETA/B receptor blockade for the prevention of sunitinib-induced hypertension and albuminuria in WKY rats. Cardiovascular Research, 2020, 116, 1779-1790.	1.8	25
20	Chanzyme TRPM7 protects against cardiovascular inflammation and fibrosis. Cardiovascular Research, 2020, 116, 721-735.	1.8	78
21	Crosstalk Between Vascular Redox and Calcium Signaling in Hypertension Involves TRPM2 (Transient) Tj ETQq1 1	0,784314 1.3	rgBT /Overl
22	Comprehensive Characterization of the Vascular Effects of Cisplatin-Based Chemotherapy in Patients With TesticularÂCancer. JACC: CardioOncology, 2020, 2, 443-455.	1.7	20
23	Importance of cholesterol-rich microdomains in the regulation of Nox isoforms and redox signaling in human vascular smooth muscle cells. Scientific Reports, 2020, 10, 17818.	1.6	14
24	Ca ²⁺ -Dependent NOX5 (NADPH Oxidase 5) Exaggerates Cardiac Hypertrophy Through Reactive Oxygen Species Production. Hypertension, 2020, 76, 827-838.	1.3	42
25	Tissue sodium excess is not hypertonic and reflects extracellular volume expansion. Nature Communications, 2020, 11, 4222.	5.8	61
26	Lessons Learned From RAG-1-Deficient Mice in Hypertension. Hypertension, 2020, 75, 935-937.	1.3	4
27	Oxidative Stress: A Unifying Paradigm in Hypertension. Canadian Journal of Cardiology, 2020, 36, 659-670.	0.8	138
28	Local endothelial DNA repair deficiency causes aging-resembling endothelial-specific dysfunction. Clinical Science, 2020, 134, 727-746.	1.8	25
29	Vascular toxicity associated with anti-angiogenic drugs. Clinical Science, 2020, 134, 2503-2520.	1.8	33
30	Epidermal growth factor signaling through transient receptor potential melastatin 7 cation channel regulates vascular smooth muscle cell function. Clinical Science, 2020, 134, 2019-2035.	1.8	15
31	OP10â€Skin Na ⁺ excess in hypertensive patients: isotonic nature and clinical correlates. , 2020, , .		0
32	Microparticles and Exosomes in Cell-Cell Communication. , 2019, , 159-168.		1
33	Atorvastatin inhibits pro-inflammatory actions of aldosterone in vascular smooth muscle cells by reducing oxidative stress. Life Sciences, 2019, 221, 29-34.	2.0	25
34	TRPM7, Magnesium, and Signaling. International Journal of Molecular Sciences, 2019, 20, 1877.	1.8	99
35	NOX5: Molecular biology and pathophysiology. Experimental Physiology, 2019, 104, 605-616.	0.9	72
36	Microparticles from vascular endothelial growth factor pathway inhibitor-treated cancer patients mediate endothelial cell injury. Cardiovascular Research, 2019, 115, 978-988.	1.8	32

#	Article	IF	CITATIONS
37	Vascular Biology of Superoxide-Generating NADPH Oxidase 5—Implications in Hypertension and Cardiovascular Disease. Antioxidants and Redox Signaling, 2019, 30, 1027-1040.	2.5	63
38	Notch3 signalling and vascular remodelling in pulmonary arterial hypertension. Clinical Science, 2019, 133, 2481-2498.	1.8	65
39	ER stress and Rho kinase activation underlie the vasculopathy of CADASIL. JCI Insight, 2019, 4, .	2.3	31
40	VEGFR (Vascular Endothelial Growth Factor Receptor) Inhibition Induces Cardiovascular Damage via Redox-Sensitive Processes. Hypertension, 2018, 71, 638-647.	1.3	73
41	Vascular dysfunction in obese diabetic db/db mice involves the interplay between aldosterone/mineralocorticoid receptor and Rho kinase signaling. Scientific Reports, 2018, 8, 2952.	1.6	32
42	Vascular smooth muscle contraction in hypertension. Cardiovascular Research, 2018, 114, 529-539.	1.8	393
43	Angiotensin-(1–7) and Vascular Function. Hypertension, 2018, 71, 68-69.	1.3	42
44	Systemic microvascular dysfunction in microvascular and vasospastic angina. European Heart Journal, 2018, 39, 4086-4097.	1.0	139
45	Vascular Nox (NADPH Oxidase) Compartmentalization, Protein Hyperoxidation, and Endoplasmic Reticulum Stress Response in Hypertension. Hypertension, 2018, 72, 235-246.	1.3	88
46	NADPH Oxidase 5 Is a Proâ€Contractile Nox Isoform and a Point of Crossâ€Talk for Calcium and Redox Signalingâ€Implications in Vascular Function. Journal of the American Heart Association, 2018, 7, .	1.6	51
47	Brown Adipose Tissue Regulates Small Artery Function Through NADPH Oxidase 4–Derived Hydrogen Peroxide and Redox-Sensitive Protein Kinase G-1α. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 455-465.	1.1	43
48	Isolation and Culture of Vascular Smooth Muscle Cells from Small and Large Vessels. Methods in Molecular Biology, 2017, 1527, 349-354.	0.4	19
49	Isolation and Differentiation of Murine Macrophages. Methods in Molecular Biology, 2017, 1527, 297-309.	0.4	50
50	Isolation and Differentiation of Human Macrophages. Methods in Molecular Biology, 2017, 1527, 311-320.	0.4	22
51	Isolation and Culture of Endothelial Cells from Large Vessels. Methods in Molecular Biology, 2017, 1527, 345-348.	0.4	11
52	Serotonin Signaling Through the 5-HT _{1B} Receptor and NADPH Oxidase 1 in Pulmonary Arterial Hypertension. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 1361-1370.	1.1	51
53	Vascular dysfunction and fibrosis in stroke-prone spontaneously hypertensive rats: The aldosterone-mineralocorticoid receptor-Nox1 axis. Life Sciences, 2017, 179, 110-119.	2.0	46
54	Redox Stress Defines the Small Artery Vasculopathy of Hypertension. Circulation Research, 2017, 120, 1721-1723.	2.0	14

Augusto C Montezano

#	Article	IF	CITATIONS
55	Genomic and non-genomic effects of androgens in the cardiovascular system: clinical implications. Clinical Science, 2017, 131, 1405-1418.	1.8	91
56	Temporal changes in cardiac oxidative stress, inflammation and remodeling induced by exercise in hypertension: Role for local angiotensin II reduction. PLoS ONE, 2017, 12, e0189535.	1.1	39
57	Novel Biosensors Reveal a Shift in the Redox Paradigm From Oxidative to Reductive Stress in Heart Disease. Circulation Research, 2016, 119, 969-971.	2.0	17
58	Differential renal effects of candesartan at high and ultra-high doses in diabetic mice–potential role of the ACE2/AT2R/Mas axis. Bioscience Reports, 2016, 36, .	1.1	32
59	Adipocyte-Specific Mineralocorticoid Receptor Overexpression in Mice Is Associated With Metabolic Syndrome and Vascular Dysfunction: Role of Redox-Sensitive PKG-1 and Rho Kinase. Diabetes, 2016, 65, 2392-2403.	0.3	46
60	Biomarkers of Oxidative Stress in Human Hypertension. , 2016, , 151-170.		6
61	Nicotinamide Adenine Dinucleotide Phosphate Oxidase–Mediated Redox Signaling and Vascular Remodeling by 16α-Hydroxyestrone in Human Pulmonary Artery Cells. Hypertension, 2016, 68, 796-808.	1.3	62
62	Internal Pudental Artery Dysfunction in Diabetes Mellitus Is Mediated by NOX1-Derived ROS-, Nrf2-, and Rho Kinase–Dependent Mechanisms. Hypertension, 2016, 68, 1056-1064.	1.3	30
63	c-Src Inhibition Improves Cardiovascular Function but not Remodeling or Fibrosis in Angiotensin Il–Induced Hypertension. Hypertension, 2016, 68, 1179-1190.	1.3	27
64	Progenitor Cells, Bone Marrow–Derived Fibrocytes and Endothelial-to-Mesenchymal Transition. Hypertension, 2016, 67, 272-274.	1.3	5
65	Off-Target Vascular Effects of Cholesteryl Ester Transfer Protein Inhibitors Involve Redox-Sensitive and Signal Transducer and Activator of Transcription 3-Dependent Pathways. Journal of Pharmacology and Experimental Therapeutics, 2016, 357, 415-422.	1.3	9
66	Vascular Fibrosis in Aging and Hypertension: Molecular Mechanisms and Clinical Implications. Canadian Journal of Cardiology, 2016, 32, 659-668.	0.8	298
67	PARK7/DJ-1 dysregulation by oxidative stress leads to magnesium deficiency: implications in degenerative and chronic diseases. Clinical Science, 2015, 129, 1143-1150.	1.8	30
68	3â€Angiotensin 1–7 regulation of endothelin-1 system in pulmonary hypertension. Heart, 2015, 101, A1.3-A1	. 1.2	0
69	Cholesteryl Ester-Transfer Protein Inhibitors Stimulate Aldosterone Biosynthesis in Adipocytes through Nox-Dependent Processes. Journal of Pharmacology and Experimental Therapeutics, 2015, 353, 27-34.	1.3	19
70	Redox signaling, Nox5 and vascular remodeling in hypertension. Current Opinion in Nephrology and Hypertension, 2015, 24, 425-433.	1.0	75
71	Hypertensive Vasculopathy. , 2015, , 1595-1618.		0
72	Oxidative Stress and Human Hypertension: Vascular Mechanisms, Biomarkers, and Novel Therapies. Canadian Journal of Cardiology, 2015, 31, 631-641.	0.8	257

AUGUSTO C MONTEZANO

#	Article	IF	CITATIONS
73	Mineralocorticoid receptor blockade prevents vascular remodelling in a rodent model of typeÂ2 diabetes mellitus. Clinical Science, 2015, 129, 533-545.	1.8	36
74	Chemerin Regulates Crosstalk Between Adipocytes and Vascular Cells Through Nox. Hypertension, 2015, 66, 657-666.	1.3	90
75	Vascular injury in diabetic db/db mice is ameliorated by atorvastatin: role of Rac1/2-sensitive Nox-dependent pathways. Clinical Science, 2015, 128, 411-423.	1.8	41
76	Mas Signaling. , 2015, , 169-179.		1
77	Vascular biology of ageing—Implications in hypertension. Journal of Molecular and Cellular Cardiology, 2015, 83, 112-121.	0.9	237
78	Downregulation of Nuclear Factor Erythroid 2–Related Factor and Associated Antioxidant Genes Contributes to Redox-Sensitive Vascular Dysfunction in Hypertension. Hypertension, 2015, 66, 1240-1250.	1.3	109
79	Nephropathy and Elevated BP in Mice with Podocyte-Specific NADPH Oxidase 5 Expression. Journal of the American Society of Nephrology: JASN, 2014, 25, 784-797.	3.0	109
80	Hypertension Due to Antiangiogenic Cancer Therapy With Vascular Endothelial Growth Factor Inhibitors: Understanding and Managing a New Syndrome. Canadian Journal of Cardiology, 2014, 30, 534-543.	0.8	110
81	Angiotensin II and Vascular Injury. Current Hypertension Reports, 2014, 16, 431.	1.5	308
82	Hypertensive Vasculopathy. , 2014, , 1-28.		0
83	Mammalian Target of Rapamycin: A Novel Pathway in Vascular Calcification. Canadian Journal of Cardiology, 2014, 30, 482-484.	0.8	3
84	Reactive Oxygen Species, Vascular Noxs, and Hypertension: Focus on Translational and Clinical Research. Antioxidants and Redox Signaling, 2014, 20, 164-182.	2.5	222
85	Reactive Oxygen Species, Vascular Disease, and Hypertension. , 2014, , 1123-1154.		1
86	Microparticles: biomarkers and beyond. Clinical Science, 2013, 124, 423-441.	1.8	299
87	Vascular Function. , 2013, , 45-65.		0
88	NADPH Oxidase 1 Plays a Key Role in Diabetes Mellitus–Accelerated Atherosclerosis. Circulation, 2013, 127, 1888-1902.	1.6	325
89	Angiotensin II, NADPH Oxidase, and Redox Signaling in the Vasculature. Antioxidants and Redox Signaling, 2013, 19, 1110-1120.	2.5	350
90	Microparticles Induce Cell Cycle Arrest Through Redox‣ensitive Processes in Endothelial Cells: Implications in Vascular Senescence. Journal of the American Heart Association, 2012, 1, e001842.	1.6	87

Augusto C Montezano

#	Article	IF	CITATIONS
91	Vascular Nox4. Circulation Research, 2012, 110, 1159-1161.	2.0	61
92	18 MICROPARTICLES INDUCE ENDOTHELIAL CELL SENESCENCE AND CELL CYCLE ARREST THROUGH REDOX-SENSITIVE PROCESSES. Journal of Hypertension, 2012, 30, e6.	0.3	0
93	Activation of vascular p38MAPK by mechanical stretch is independent of c-Src and NADPH oxidase: influence of hypertension and angiotensin II. Journal of the American Society of Hypertension, 2012, 6, 169-178.	2.3	25
94	Molecular Mechanisms of Hypertension—Reactive Oxygen Species and Antioxidants: A Basic Science Update for the Clinician. Canadian Journal of Cardiology, 2012, 28, 288-295.	0.8	199
95	Reactive Oxygen Species and the Cardiovascular System. Colloquium Series on Integrated Systems Physiology From Molecule To Function, 2012, 4, 1-102.	0.3	2
96	Oxidative stress, Noxs, and hypertension: Experimental evidence and clinical controversies. Annals of Medicine, 2012, 44, S2-S16.	1.5	154
97	Oxidative Stress, Nox Isoforms and Complications of Diabetes—Potential Targets for Novel Therapies. Journal of Cardiovascular Translational Research, 2012, 5, 509-518.	1.1	104
98	Reactive Oxygen Species and Endothelial Function – Role of Nitric Oxide Synthase Uncoupling and Nox Family Nicotinamide Adenine Dinucleotide Phosphate Oxidases. Basic and Clinical Pharmacology and Toxicology, 2012, 110, 87-94.	1.2	242
99	Endothelial Microparticle Formation by Angiotensin II Is Mediated via Ang II Receptor Type I/NADPH Oxidase/ Rho Kinase Pathways Targeted to Lipid Rafts. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 1898-1907.	1.1	192
100	Differential regulation of Nox1, Nox2 and Nox4 in vascular smooth muscle cells from WKY and SHR. Journal of the American Society of Hypertension, 2011, 5, 137-153.	2.3	83
101	Novel Nox homologues in the vasculature: focusing on Nox4 and Nox5. Clinical Science, 2011, 120, 131-141.	1.8	99
102	Angiotensin II and the vascular phenotype in hypertension. Expert Reviews in Molecular Medicine, 2011, 13, e11.	1.6	152
103	Adventitia-Derived Hydrogen Peroxide Impairs Relaxation of the Rat Carotid Artery <i>via</i> Smooth Muscle Cell p38 Mitogen-Activated Protein Kinase. Antioxidants and Redox Signaling, 2011, 15, 1507-1515.	2.5	28
104	Nicotinamide Adenine Dinucleotide Phosphate Reduced Oxidase 5 (Nox5) Regulation by Angiotensin II and Endothelin-1 Is Mediated via Calcium/Calmodulin-Dependent, Rac-1-Independent Pathways in Human Endothelial Cells. Circulation Research, 2010, 106, 1363-1373.	2.0	167
105	Vascular Smooth Muscle Cell Differentiation to an Osteogenic Phenotype Involves TRPM7 Modulation by Magnesium. Hypertension, 2010, 56, 453-462.	1.3	192
106	Regulation of the novel Mg2+ transporter transient receptor potential melastatin 7 (TRPM7) cation channel by bradykinin in vascular smooth muscle cells. Journal of Hypertension, 2009, 27, 155-166.	0.3	65
107	Endothelin, sex and hypertension. Clinical Science, 2008, 114, 85-97.	1.8	64
108	Vascular signaling through cholesterol-rich domains: implications in hypertension. Current Opinion in Nephrology and Hypertension, 2007, 16, 90-104.	1.0	40

#	Article	IF	CITATIONS
109	Inhibitory effects of PPAR-γ on endothelin-1-induced inflammatory pathways in vascular smooth muscle cells from normotensive and hypertensive rats. Journal of the American Society of Hypertension, 2007, 1, 150-160.	2.3	14
110	Increased inflammatory biomarkers in hypertensive type 2 diabetic patients: improvement after angiotensin II type 1 receptor blockade. Journal of the American Society of Hypertension, 2007, 1, 189-199.	2.3	25
111	ET A Receptor Mediates Altered Leukocyte-Endothelial Cell Interaction and Adhesion Molecules Expression in DOCA–Salt Rats. Hypertension, 2004, 43, 872-879.	1.3	53