Michel Linder

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6538979/publications.pdf

Version: 2024-02-01

95 papers

4,536 citations

32 h-index 106344 65 g-index

95 all docs 95 docs citations

95 times ranked 6130 citing authors

#	Article	IF	CITATIONS
1	Polysaccharides enzymatic modification to control the coacervation or the aggregation behavior: A thermodynamic study. Food Hydrocolloids, 2022, 122, 107092.	10.7	3
2	Efficient TGF- \hat{l}^21 Delivery to Articular Chondrocytes In Vitro Using Agro-Based Liposomes. International Journal of Molecular Sciences, 2022, 23, 2864.	4.1	9
3	Encapsulation of Salmon Peptides in Marine Liposomes: Physico-Chemical Properties, Antiradical Activities and Biocompatibility Assays. Marine Drugs, 2022, 20, 249.	4.6	13
4	Preservative Effect of Ginger Root (Zingiber officinale R.) Extract in Refined Palm Olein Subjected to Accelerated Thermal Oxidation. Journal of Food Quality, 2022, 2022, 1-11.	2.6	3
5	Polymer functionalization through an enzymatic process: Intermediate products characterization and their grafting onto gum Arabic. International Journal of Biological Macromolecules, 2021, 169, 480-491.	7.5	3
6	Mixture design applied for formulation and characterization of vegetal-based fermented products. LWT - Food Science and Technology, 2021, 146, 111336.	5.2	6
7	Study and optimization of core-shell capsules produced by annular jet breaking coextrusion. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 629, 127475.	4.7	5
8	Use of Active Salmon-Lecithin Nanoliposomes to Increase Polyunsaturated Fatty Acid Bioavailability in Cortical Neurons and Mice. International Journal of Molecular Sciences, 2021, 22, 11859.	4.1	5
9	Curcumin Loaded Nanoliposomes Localization by Nanoscale Characterization. International Journal of Molecular Sciences, 2020, 21, 7276.	4.1	17
10	Nanoliposomes and Nanoemulsions Based on Chia Seed Lipids: Preparation and Characterization. International Journal of Molecular Sciences, 2020, 21, 9079.	4.1	15
11	Lipid Composition of Liposomal Membrane Largely Affects Its Transport and Uptake through Small Intestinal Epithelial Cell Models. Lipids, 2020, 55, 671-682.	1.7	2
12	Nanoliposomes from Agro-Resources as Promising Delivery Systems for Chondrocytes. International Journal of Molecular Sciences, 2020, 21, 3436.	4.1	10
13	Physicochemical Properties and Liposomal Formulations of Hydrolysate Fractions of Four Sea Cucumbers (Holothuroidea: Echinodermata) from the Northwestern Algerian Coast. Molecules, 2020, 25, 2972.	3.8	3
14	Effects of Bioactive Marine-Derived Liposomes on Two Human Breast Cancer Cell Lines. Marine Drugs, 2020, 18, 211.	4.6	17
15	Growth-Inhibitory Effect of Chitosan-Coated Liposomes Encapsulating Curcumin on MCF-7 Breast Cancer Cells. Marine Drugs, 2020, 18, 217.	4.6	48
16	Physicochemical characterizations of gum Arabic modified with oxidation products of ferulic acid. Food Hydrocolloids, 2020, 107, 105919.	10.7	29
17	Neurotrophic Effect of Fish-Lecithin Based Nanoliposomes on Cortical Neurons. Marine Drugs, 2019, 17, 406.	4.6	12
18	Preparation, Characterization, and Release Kinetics of Chitosan-Coated Nanoliposomes Encapsulating Curcumin in Simulated Environments. Molecules, 2019, 24, 2023.	3.8	77

#	Article	IF	CITATIONS
19	Gum Arabic and chitosan self-assembly: Thermodynamic and mechanism aspects. Food Hydrocolloids, 2019, 96, 463-474.	10.7	25
20	Effect of Boiling and roasting on lipid quality, proximate composition, and mineral content of walnut seeds ⟨i⟩(Tetracarpidium conophorum)⟨/i⟩ produced and commercialized in Kumba, Southâ€West Region Cameroon. Food Science and Nutrition, 2018, 6, 417-423.	3.4	23
21	Effects of natural antioxidants extracted from Cameroonian ginger roots on the oxidative stability of refined palm olein. European Food Research and Technology, 2018, 244, 1015-1025.	3.3	5
22	Chitosan - Shea butter solid nanoparticles assemblies for the preparation of a novel nanoparticles in microparticles system containing curcumin. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 553, 359-367.	4.7	18
23	The Positive Role of Curcumin-Loaded Salmon Nanoliposomes on the Culture of Primary Cortical Neurons. Marine Drugs, 2018, 16, 218.	4.6	37
24	A new insight into cell walls of Chlorophyta. Algal Research, 2017, 25, 333-371.	4.6	170
25	Synthesis and Characterization of Nanofunctionalized Gelatin Methacrylate Hydrogels. International Journal of Molecular Sciences, 2017, 18, 2675.	4.1	73
26	Effect of refrigeration time on the lipid oxidation and fatty acid profiles of catfish (Arius) Tj ETQq0 0 () rgBT/Ov	erlock 10 Tf 5
27	Shea butter solid nanoparticles for curcumin encapsulation: Influence of nanoparticles size on drug loading. European Journal of Lipid Science and Technology, 2016, 118, 1168-1178.	1.5	30
28	Oxidative stabilization of RBD palm olein under forced storage conditions by old Cameroonian green tea leaves methanolic extract. NFS Journal, 2016, 3, 33-40.	4.3	25
29	Valorization of soursop flowers (<i>Annona muricata</i> L.) as potent source of natural antioxidants for stabilization of palm olein during accelerated storage. Food Science and Nutrition, 2016, 4, 802-810.	3.4	11
30	RSM applied for optimization of deep-fat fried ripe plantain slices and study of oxidation kinetics of oil by a DSC and polar methods. Journal of Food Science and Technology, 2016, 53, 269-280.	2.8	7
31	Liposomal nanodelivery systems using soy and marine lecithin to encapsulate food biopreservative nisin. LWT - Food Science and Technology, 2015, 62, 341-349.	5.2	76
32	Transfer across goatskin barrier of 2-butanone, 2,3-butanedione and 2-butanol during maturation of traditional Lebanese cheese, Darfiyeh: Comparison between experimental aqueous model solution and goatskin system. Small Ruminant Research, 2015, 133, 36-42.	1.2	0
33	Morphological and Physical Analysis of Natural Phospholipids-Based Biomembranes. PLoS ONE, 2014, 9, e107435.	2.5	24
34	Lysophosphatidylserine form DHA maybe the most effective as substrate for brain DHA accretion. Biocatalysis and Agricultural Biotechnology, 2014, 3, 303-309.	3.1	13
35	Liposome encapsulation of curcumin: Physico-chemical characterizations and effects on MCF7 cancer cell proliferation. International Journal of Pharmaceutics, 2014, 461, 519-528.	5.2	164
36	Influence of lecithin–lipid composition on physico-chemical properties of nanoliposomes loaded with a hydrophobic molecule. Colloids and Surfaces B: Biointerfaces, 2014, 115, 197-204.	5.0	66

#	Article	IF	Citations
37	Vibrational, calorimetric, and molecular conformational study on calcein interaction with model lipid membrane. Journal of Nanoparticle Research, 2013, 15, 1.	1.9	12
38	Calcein release behavior from liposomal bilayer; influence of physicochemical/mechanical/structural properties of lipids. Biochimie, 2013, 95, 2018-2033.	2.6	123
39	Changes of lipids in insect (<i>Rhynchophorus phoenicis</i>) during cooking and storage. European Journal of Lipid Science and Technology, 2013, 115, 186-195.	1.5	28
40	Effects of Ar–H2–N2 microwave plasma on chitosan and its nanoliposomes blend thin films designed for tissue engineering applications. Carbohydrate Polymers, 2013, 93, 401-411.	10.2	15
41	Formulation of subâ€micron emulsions containing docosahexaenoic acid esterified in triacylglycerols or phospholipids. European Journal of Lipid Science and Technology, 2013, 115, 1294-1308.	1.5	12
42	Effects of Ar–N ₂ –O ₂ Microwave Plasma on Polyâ€ <scp>L</scp> â€Lactic Acid Thin Films Designed for Tissue Engineering. Plasma Processes and Polymers, 2013, 10, 535-543.	3.0	9
43	Anxiolytic-Like Effect of a Salmon Phospholipopeptidic Complex Composed of Polyunsaturated Fatty Acids and Bioactive Peptides. Marine Drugs, 2013, 11, 4294-4317.	4.6	12
44	Formulation, characterization and pharmacokinetic studies of coenzyme Q10 PUFA's nanoemulsions. European Journal of Pharmaceutical Sciences, 2012, 47, 305-312.	4.0	69
45	Beneficial effects and oxidative stability of omega-3 long-chain polyunsaturated fatty acids. Trends in Food Science and Technology, 2012, 25, 24-33.	15.1	230
46	Optimization and characterization of liposome formulation by mixture design. Analyst, The, 2012, 137, 773-786.	3.5	60
47	Effects of nanoliposomes based on soya, rapeseed and fish lecithins on chitosan thin films designed for tissue engineering. Carbohydrate Polymers, 2012, 88, 618-627.	10.2	41
48	Influence of lipid composition on physicochemical properties of nanoliposomes encapsulating natural dipeptide antioxidant l-carnosine. Food Chemistry, 2012, 134, 632-640.	8.2	79
49	Elaboration and characterization of nanoliposome made of soya; rapeseed and salmon lecithins: Application to cell culture. Colloids and Surfaces B: Biointerfaces, 2012, 95, 75-81.	5.0	55
50	Mechanism of Bioactive Transfer through Liposomal Bilayers. Current Drug Targets, 2011, 12, 531-545.	2.1	17
51	Encapsulation of probiotic living cells: From laboratory scale to industrial applications. Journal of Food Engineering, 2011, 104, 467-483.	5.2	670
52	Physico-chemical characterization of nano-emulsions in cosmetic matrix enriched on omega-3. Journal of Nanobiotechnology, 2011, 9, 41.	9.1	62
53	Structural, hydration, and phase transition properties of phosphatidylcholine from salmon heads. European Journal of Lipid Science and Technology, 2011, 113, 744-755.	1.5	6
54	Liposomes: A Review of Manufacturing Techniques and Targeting Strategies. Current Nanoscience, 2011, 7, 436-452.	1.2	272

#	Article	IF	Citations
55	Changes in proteolysis and volatile fraction during ripening of Darfiyeh, a Lebanese artisanal raw goat's milk cheese. Small Ruminant Research, 2010, 90, 75-82.	1.2	40
56	Oxidative kinetics of salmon oil in bulk and in nanoemulsion stabilized by marine lecithin. Process Biochemistry, 2010, 45, 187-195.	3.7	107
57	Control of salmon oil photo-oxidation during storage in HPMC packaging film: Influence of film colour. Food Chemistry, 2010, 120, 395-401.	8.2	42
58	From Krill toÂWhale: anÂoverview ofÂmarine fatty acids andÂlipid compositions. Oleagineux Corps Gras Lipides, 2010, 17, 194-204.	0.2	24
59	Active Food Packaging Evolution: Transformation from Micro- to Nanotechnology. Critical Reviews in Food Science and Nutrition, 2010, 50, 799-821.	10.3	146
60	Response Surface Methodology: An Extensive Potential to Optimize in vivo Photodynamic Therapy Conditions. International Journal of Radiation Oncology Biology Physics, 2009, 75, 244-252.	0.8	29
61	Oils of insects and larvae consumed in Africa: potential sources of polyunsaturated fatty acids. Oleagineux Corps Gras Lipides, 2009, 16, 230-235.	0.2	55
62	Studies of Irvingia gabonensis Seed Kernels: Oil Technological Applications. Pakistan Journal of Nutrition, 2009, 8, 151-157.	0.2	39
63	Enzyme-assisted hexane extraction of Ricinodendron heudelotii (Bail.) Pierre ex Pax seeds oil. International Journal of Food Science and Technology, 2008, 43, 1169-1175.	2.7	10
64	Proposition de classement des sources végétales d'acides gras en fonction de leur profil nutritionnel. Oleagineux Corps Gras Lipides, 2008, 15, 56-75.	0.2	12
65	Phosphoinositides Are Involved in Control of the Glucose-Dependent Growth Resumption That Follows the Transition Phase in Streptomyces lividans. Journal of Bacteriology, 2007, 189, 741-749.	2.2	14
66	A selective enumeration medium for Carnobacterium maltaromaticum. Journal of Microbiological Methods, 2007, 68, 516-521.	1.6	17
67	Relationships between Dairy Powder Surface Composition and Wetting Properties during Storage: Importance of Residual Lipids. Journal of Agricultural and Food Chemistry, 2007, 55, 6561-6567.	5.2	60
68	Polar lipids: n-3 PUFA carriers for membranes and brain: nutritional interest and emerging processes. Oleagineux Corps Gras Lipides, 2007, 14, 224-229.	0.2	20
69	Fatty acid profiles of 80â€vegetable oils with regard to their nutritional potential. European Journal of Lipid Science and Technology, 2007, 109, 710-732.	1.5	481
70	A comparison of disruption procedures for the analysis of phospholipids from Streptomyces pristinaespiralis. Process Biochemistry, 2007, 42, 700-703.	3.7	7
71	Application du procédé séchage-friture aux amandes de karité : influence sur la composition en matià res insaponifiables du beurre. Oleagineux Corps Gras Lipides, 2007, 14, 366-370.	0.2	4
72	Fractions lipidiques obtenues à partir des co-produits de la filià re halieutique. Oleagineux Corps Gras Lipides, 2006, 13, 12-15.	0.2	2

#	Article	IF	Citations
73	Optimization of the components concentrations of the lactoperoxidase system by RSM. Journal of Applied Microbiology, 2006, 100, 1034-1042.	3.1	10
74	Analysis of lipids extracted from salmon (Salmo salar) heads by commercial proteolytic enzymes. European Journal of Lipid Science and Technology, 2006, 108, 766-775.	1.5	96
75	Proteolytic Extraction of Salmon Oil and PUFA Concentration by Lipases. Marine Biotechnology, 2005, 7, 70-76.	2.4	83
76	Les membranes en lipotransformation : bilan, résultats, perspectives. Oleagineux Corps Gras Lipides, 2005, 12, 407-413.	0.2	0
77	Extraction, fractionnement et concentration des huiles marines. Oleagineux Corps Gras Lipides, 2004, 11, 123-130.	0.2	7
78	Solvent and enzymatic extraction of Safou and Kolo oils. European Journal of Lipid Science and Technology, 2004, 106, 289-293.	1.5	8
79	Cell envelope analysis of insensitive, susceptible or resistant strains ofLeuconostocandWeissellagenus toLeuconostoc mesenteroidesFR 52 bacteriocins. FEMS Microbiology Letters, 2004, 241, 49-55.	1.8	5
80	Lipides polaires marins. Oleagineux Corps Gras Lipides, 2004, 11, 142-145.	0.2	3
81	De nouveaux procédés d'extraction des huiles pour des produits finis de haute qualité. Oleagineux Corps Gras Lipides, 2004, 11, 377-380.	0.2	3
82	Enrichment of salmon oil with n-3 PUFA by lipolysis, filtration and enzymatic re-esterification. European Journal of Lipid Science and Technology, 2002, 104, 455-462.	1.5	59
83	BIOCHEMISTRY AND BIOENGINEERING   NEW APPLICATION OF LIPASES IN LIPID TRANSFORMATION'‹ Enzyme-catalysed enrichment of n-3 polyunsaturated fatty acids of salmon oil: optimisation of reaction conditions. Oleagineux Corps Gras Lipides, 2001, 8, 73-77.	о.2	5
84	Molecular interaction of triglycerides on a modified silica (Kieselguhr G): a thermodynamical approach by surface tension calculation and DSC measurements. European Journal of Lipid Science and Technology, 2001, 103, 576-582.	1.5	6
85	Crossflow filtration of oils: selective adsorption of butter oil triglycerides on a support characterised by various hydrophobicity. European Journal of Lipid Science and Technology, 2000, 102, 7-14.	1.5	6
86	Predictive models of the combined effects of curvaticin 13, NaCl and pH on the behaviour of Listeria monocytogenes ATCC 15313 in broth. Journal of Applied Microbiology, 2000, 88, 919-929.	3.1	19
87	Inhibitory combinations of nisin, sodium chloride, and pH on Listeria monocytogenes ATCC 15313 in broth by an experimental design approach. International Journal of Food Microbiology, 2000, 54, 109-115.	4.7	44
88	Optimization of butylgalactoside synthesis by \hat{l}^2 -galactosidase from Aspergillus oryzae. Enzyme and Microbial Technology, 1999, 25, 208-213.	3.2	28
89	Inhibition ofBacillus licheniformisspore growth in milk by nisin, monolaurin, and pH combinations. Journal of Applied Microbiology, 1999, 86, 311-324.	3.1	51
90	Response Surface Methodology, an approach to predict the effects of a lactoperoxidase system, Nisin, alone or in combination, onListeria monocytogenesin skim milk. Journal of Applied Microbiology, 1999, 86, 642-652.	3.1	27

MICHEL LINDER

#	Article	IF	CITATIONS
91	Effets combinés de la nisine, de l'acide lactique et du sorbate de potassium sur les spores de Bacillus licheniformis dans le lait. Dairy Science and Technology, 1998, 78, 117-128.	0.9	20
92	In Vivoandin VitroDigestibility of Soybean, Lupine, and Rapeseed Meal Proteins after Various Technological Processesâ€. Journal of Agricultural and Food Chemistry, 1997, 45, 1762-1769.	5.2	47
93	Nutritional Value of Veal Bone Hydrolysate. Journal of Food Science, 1997, 62, 183-189.	3.1	19
94	Functional Properties of Veal Bone Hydrolysates. Journal of Food Science, 1996, 61, 712-716.	3.1	25
95	Protein Recovery from Veal Bones by Enzymatic Hydrolysis. Journal of Food Science, 1995, 60, 949-952.	3.1	31