
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6538786/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The <i>EGFRvIII</i> transcriptome in glioblastoma: A meta-omics analysis. Neuro-Oncology, 2022, 24, 429-441.	0.6	7
2	Abiraterone switches castrationâ€resistant prostate cancer dependency from adrenal androgens towards androgen receptor variants and glucocorticoid receptor signalling. Prostate, 2022, 82, 505-516.	1.2	9
3	CRISPRs in the human genome are differentially expressed between malignant and normalÂadjacent to tumor tissue. Communications Biology, 2022, 5, 338.	2.0	2
4	Personalised biopsy schedules based on risk of Gleason upgrading for patients with lowâ€risk prostate cancer on active surveillance. BJU International, 2021, 127, 96-107.	1.3	15
5	Blood-based PD-L1 analysis in tumor-derived extracellular vesicles: Applications for optimal use of anti-PD-1/PD-L1 axis inhibitors. Biochimica Et Biophysica Acta: Reviews on Cancer, 2021, 1875, 188463.	3.3	16
6	Trans-ancestry genome-wide association meta-analysis of prostate cancer identifies new susceptibility loci and informs genetic risk prediction. Nature Genetics, 2021, 53, 65-75.	9.4	264
7	Comparing Approaches to Normalize, Quantify, and Characterize Urinary Extracellular Vesicles. Journal of the American Society of Nephrology: JASN, 2021, 32, 1210-1226.	3.0	53
8	Detection of tumor-derived extracellular vesicles in plasma from patients with solid cancer. BMC Cancer, 2021, 21, 315.	1.1	18
9	Gene Regulation Network Analysis on Human Prostate Orthografts Highlights a Potential Role for the JMJD6 Regulon in Clinical Prostate Cancer. Cancers, 2021, 13, 2094.	1.7	6
10	Urinary extracellular vesicles: A position paper by the Urine Task Force of the International Society for Extracellular Vesicles. Journal of Extracellular Vesicles, 2021, 10, e12093.	5.5	182
11	Androgens alter the heterogeneity of small extracellular vesicles and the small RNA cargo in prostate cancer. Journal of Extracellular Vesicles, 2021, 10, e12136.	5.5	15
12	FASTAFS: file system virtualisation of random access compressed FASTA files. BMC Bioinformatics, 2021, 22, 535.	1.2	4
13	The role of OncoSnoRNAs and Ribosomal RNA 2'-O-methylation in Cancer. RNA Biology, 2021, 18, 61-74.	1.5	21
14	Fusion transcripts and their genomic breakpoints in polyadenylated and ribosomal RNA–minus RNA sequencing data. GigaScience, 2021, 10, .	3.3	10
15	Oligometastatic Prostate Cancer: Results of a Dutch Multidisciplinary Consensus Meeting. European Urology Oncology, 2020, 3, 231-238.	2.6	30
16	Adherence to Active Surveillance Protocols for Low-risk Prostate Cancer: Results of the Movember Foundation's Global Action Plan Prostate Cancer Active Surveillance Initiative. European Urology Oncology, 2020, 3, 80-91.	2.6	24
17	Molecular characterization of colorectal adenomas reveals POFUT1 as a candidate driver of tumor progression. International Journal of Cancer, 2020, 146, 1979-1992.	2.3	32
18	The Movember Prostate Cancer Landscape Analysis: an assessment of unmet research needs. Nature Reviews Urology, 2020, 17, 499-512.	1.9	15

#	Article	IF	CITATIONS
19	Predicting Biopsy Outcomes During Active Surveillance for Prostate Cancer: External Validation of the Canary Prostate Active Surveillance Study Risk Calculators in Five Large Active Surveillance Cohorts. European Urology, 2019, 76, 693-702.	0.9	18
20	Extracellular Vesicle Quantification and Characterization: Common Methods and Emerging Approaches. Bioengineering, 2019, 6, 7.	1.6	219
21	<i>AR</i> splice variants in circulating tumor cells of patients with castrationâ€resistant prostate cancer: relation with outcome to cabazitaxel. Molecular Oncology, 2019, 13, 1795-1807.	2.1	23
22	Androgen receptor (AR) splice variant 7 and fullâ€length AR expression is associated with clinical outcome: a translational study in patients with castrateâ€resistant prostate cancer. BJU International, 2019, 124, 693-700.	1.3	32
23	Differential tissue expression of extracellular vesicleâ€derived proteins in prostate cancer. Prostate, 2019, 79, 1032-1042.	1.2	10
24	A bypass mechanism of abirateroneâ€resistant prostate cancer: Accumulating CYP17A1 substrates activate androgen receptor signaling. Prostate, 2019, 79, 937-948.	1.2	14
25	Widespread and Functional RNA Circularization in Localized Prostate Cancer. Cell, 2019, 176, 831-843.e22.	13.5	317
26	Consistent Biopsy Quality and Gleason Grading Within the Global Active Surveillance Global Action Plan 3 Initiative: A Prerequisite for Future Studies. European Urology Oncology, 2019, 2, 333-336.	2.6	8
27	Reasons for Discontinuing Active Surveillance: Assessment of 21 Centres in 12 Countries in the Movember GAP3 Consortium. European Urology, 2019, 75, 523-531.	0.9	58
28	SNPitty. Journal of Molecular Diagnostics, 2018, 20, 166-176.	1.2	13
29	Reply to Ugo De Giorgi, Vincenza Conteduca, and Emanuela Scarpi's Letter to the Editor re: Marzia Del Re, Elisa Biasco, Stefania Crucitta, et al. The Detection of Androgen Receptor Splice Variant 7 in Plasma-derived Exosomal RNA Strongly Predicts Resistance to Hormonal Therapy in Metastatic Prostate Cancer Patients. Eur Urol 2017;71:680–7. European Urology, 2018, 73, e11-e12.	0.9	0
30	Tumor heterogeneity, aggressiveness, and immune cell composition in a novel syngeneic PSAâ€ŧargeted <i>Pten</i> knockout mouse prostate cancer (MuCaP) model. Prostate, 2018, 78, 1013-1023.	1.2	4
31	Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. Journal of Extracellular Vesicles, 2018, 7, 1535750.	5.5	6,961
32	Fractionated Radiation of Primary Prostate Basal Cells Results in Downplay of Interferon Stem Cell and Cell Cycle Checkpoint Signatures. European Urology, 2018, 74, 847-849.	0.9	4
33	Consensus molecular subtype classification of colorectal adenomas. Journal of Pathology, 2018, 246, 266-276.	2.1	60
34	Cribriform and intraductal prostate cancer are associated with increased genomic instability and distinct genomic alterations. BMC Cancer, 2018, 18, 8.	1.1	93
35	Association analyses of more than 140,000 men identify 63 new prostate cancer susceptibility loci. Nature Genetics, 2018, 50, 928-936.	9.4	652
36	Fine-mapping of prostate cancer susceptibility loci in a large meta-analysis identifies candidate causal variants. Nature Communications, 2018, 9, 2256.	5.8	88

#	Article	IF	CITATIONS
37	Epithelial–Mesenchymal Transition in Human Prostate Cancer Demonstrates Enhanced Immune Evasion Marked by IDO1 Expression. Cancer Research, 2018, 78, 4671-4679.	0.4	41
38	Tissue proteomics outlines AGR2 AND LOX5 as markers for biochemical recurrence of prostate cancer. Oncotarget, 2018, 9, 36444-36456.	0.8	10
39	Extracellular vesicles released by mesenchymal-like prostate carcinoma cells modulate EMT state of recipient epithelial-like carcinoma cells through regulation of AR signaling. Cancer Letters, 2017, 410, 100-111.	3.2	28
40	Extracellular vesicles for personalized therapy decision support in advanced metastatic cancers and its potential impact for prostate cancer. Prostate, 2017, 77, 1416-1423.	1.2	22
41	The Detection of Androgen Receptor Splice Variant 7 in Plasma-derived Exosomal RNA Strongly Predicts Resistance to Hormonal Therapy in Metastatic Prostate Cancer Patients. European Urology, 2017, 71, 680-687.	0.9	213
42	A mononucleotide repeat in PRRT2 is an important, frequent target of mismatch repair deficiency in cancer. Oncotarget, 2017, 8, 6043-6056.	0.8	5
43	Extracellular Vesicles and Their Role in Urologic Malignancies. European Urology, 2016, 70, 323-331.	0.9	79
44	An immunoassay for urinary extracellular vesicles. American Journal of Physiology - Renal Physiology, 2016, 310, F796-F801.	1.3	36
45	The Potential of MicroRNAs as Prostate Cancer Biomarkers. European Urology, 2016, 70, 312-322.	0.9	243
46	Systematic Identification of MicroRNAs That Impact on Proliferation of Prostate Cancer Cells and Display Changed Expression in Tumor Tissue. European Urology, 2016, 69, 1120-1128.	0.9	53
47	Low-Molecular-Weight Protein Tyrosine Phosphatase Predicts Prostate Cancer Outcome by Increasing the Metastatic Potential. European Urology, 2016, 69, 710-719.	0.9	25
48	Integration of EGA secure data access into Galaxy. F1000Research, 2016, 5, 2841.	0.8	7
49	Human PDE4D isoform composition is deregulated in primary prostate cancer and indicative for disease progression and development of distant metastases. Oncotarget, 2016, 7, 70669-70684.	0.8	21
50	A comprehensive repertoire of tRNA-derived fragments in prostate cancer. Oncotarget, 2016, 7, 24766-24777.	0.8	144
51	mTOR pathway activation is a favorable prognostic factor in human prostate adenocarcinoma. Oncotarget, 2016, 7, 32916-32924.	0.8	14
52	Gene-expression analysis of gleason grade 3 tumor glands embedded in low- and high-risk prostate cancer. Oncotarget, 2016, 7, 37846-37856.	0.8	14
53	Androgen receptor profiling predicts prostate cancer outcome. EMBO Molecular Medicine, 2015, 7, 1450-1464.	3.3	67
54	Immunoâ€based detection of extracellular vesicles in urine as diagnostic marker for prostate cancer. International Journal of Cancer, 2015, 137, 2869-2878.	2.3	118

#	Article	IF	CITATIONS
55	SYK Is a Candidate Kinase Target for the Treatment of Advanced Prostate Cancer. Cancer Research, 2015, 75, 230-240.	0.4	61
56	Exploring Prostate Cancer Genome Reveals Simultaneous Losses of PTEN, FAS and PAPSS2 in Patients with PSA Recurrence after Radical Prostatectomy. International Journal of Molecular Sciences, 2015, 16, 3856-3869.	1.8	15
57	Discriminating somatic and germline mutations in tumor DNA samples without matching normals. Genome Research, 2015, 25, 1382-1390.	2.4	66
58	Efficacy of Cabazitaxel in Castration-resistant Prostate Cancer Is Independent of the Presence of AR-V7 in Circulating Tumor Cells. European Urology, 2015, 68, 939-945.	0.9	223
59	MiRâ€1247â€5p is overexpressed in castration resistant prostate cancer and targets MYCBP2. Prostate, 2015, 75, 798-805.	1.2	47
60	Identification and Diagnostic Performance of a Small RNA within the PCA3 and BMCC1 Gene Locus That Potentially Targets mRNA. Cancer Epidemiology Biomarkers and Prevention, 2015, 24, 268-275.	1.1	10
61	FlaiMapper: computational annotation of small ncRNA-derived fragments using RNA-seq high-throughput data. Bioinformatics, 2015, 31, 665-673.	1.8	28
62	Novel long non-coding RNAs are specific diagnostic and prognostic markers for prostate cancer. Oncotarget, 2015, 6, 4036-4050.	0.8	42
63	C/D-box snoRNA-derived RNA production is associated with malignant transformation and metastatic progression in prostate cancer. Oncotarget, 2015, 6, 17430-17444.	0.8	80
64	iReport: a generalised Galaxy solution for integrated experimental reporting. GigaScience, 2014, 3, 19.	3.3	5
65	Serum levels of arachidonic acid metabolites change during prostate cancer progression. Prostate, 2014, 74, 618-627.	1.2	22
66	Long Noncoding RNA in Prostate, Bladder, and Kidney Cancer. European Urology, 2014, 65, 1140-1151.	0.9	601
67	Serum kynurenine/tryptophan ratio is not a potential marker for detecting prostate cancer. Clinical Biochemistry, 2014, 47, 1347-1348.	0.8	13
68	SOCS2 mediates the cross talk between androgen and growth hormone signaling in prostate cancer. Carcinogenesis, 2014, 35, 24-33.	1.3	42
69	Validation of stem cell markers in clinical prostate cancer: α6-Integrin is predictive for non-aggressive disease. Prostate, 2014, 74, 488-496.	1.2	37
70	Gene fusions by chromothripsis of chromosome 5q in the VCaP prostate cancer cell line. Human Genetics, 2013, 132, 709-713.	1.8	31
71	Intratumoral conversion of adrenal androgen precursors drives androgen receptor-activated cell growth in prostate cancer more potently than de novo steroidogenesis. Prostate, 2013, 73, 1636-1650.	1.2	35
72	Exosome-mediated transmission of hepatitis C virus between human hepatoma Huh7.5 cells. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 13109-13113.	3.3	422

#	Article	IF	CITATIONS
73	miQ—A novel microRNA based diagnostic and prognostic tool for prostate cancer. International Journal of Cancer, 2013, 132, 2867-2875.	2.3	79
74	Beyond microRNA – Novel RNAs derived from small non-coding RNA and their implication in cancer. Cancer Letters, 2013, 340, 201-211.	3.2	169
75	Active surveillance for low-risk prostate cancer. Critical Reviews in Oncology/Hematology, 2013, 85, 295-302.	2.0	46
76	A 36-gene Signature Predicts Clinical Progression in a Subgroup of ERG-positive Prostate Cancers. European Urology, 2013, 64, 941-950.	0.9	31
77	Genome-Wide Investigation of Multifocal and Unifocal Prostate Cancer — Are They Genetically Different?. International Journal of Molecular Sciences, 2013, 14, 11816-11829.	1.8	18
78	Identification of <i>TDRD1</i> as a direct target gene of <i>ERG</i> in primary prostate cancer. International Journal of Cancer, 2013, 133, 335-345.	2.3	59
79	Proteomic Profiling of Exosomes Leads to the Identification of Novel Biomarkers for Prostate Cancer. PLoS ONE, 2013, 8, e82589.	1.1	179
80	Tumor Markers. , 2013, , 423-444.		0
81	Vesiclepedia: A Compendium for Extracellular Vesicles with Continuous Community Annotation. PLoS Biology, 2012, 10, e1001450.	2.6	1,064
82	Profiling of Antibody Production against Xenograft-released Proteins by Protein Microarrays Discovers Prostate Cancer Markers. Journal of Proteome Research, 2012, 11, 728-735.	1.8	14
83	Androgen receptor coregulators: Recruitment via the coactivator binding groove. Molecular and Cellular Endocrinology, 2012, 352, 57-69.	1.6	99
84	Activation of c-MET Induces a Stem-Like Phenotype in Human Prostate Cancer. PLoS ONE, 2011, 6, e26753.	1.1	66
85	Exosomes as Biomarker Treasure Chests for Prostate Cancer. European Urology, 2011, 59, 823-831.	0.9	246
86	Inhibition of androgen receptor functions by gelsolin FxxFF peptide delivered by transfection, cellâ€penetrating peptides, and lentiviral infection. Prostate, 2011, 71, 241-253.	1.2	11
87	Androgen regulation of microâ€RNAs in prostate cancer. Prostate, 2011, 71, 604-614.	1.2	144
88	The miRâ€15aâ€miRâ€16â€1 locus is homozygously deleted in a subset of prostate cancers. Genes Chromosome and Cancer, 2011, 50, 499-509.	^{2S} 1.5	42
89	Modulation of Androgen Receptor Signaling in Hormonal Therapy-Resistant Prostate Cancer Cell Lines. PLoS ONE, 2011, 6, e23144.	1.1	46
90	Differential expression of protease activity in serum samples of prostate carcinoma patients with metastases. Proteomics, 2010, 10, 2348-2358.	1.3	16

#	Article	IF	CITATIONS
91	Bypass Mechanisms of the Androgen Receptor Pathway in Therapy-Resistant Prostate Cancer Cell Models. PLoS ONE, 2010, 5, e13500.	1.1	88
92	Evidence of Limited Contributions for Intratumoral Steroidogenesis in Prostate Cancer. Cancer Research, 2010, 70, 1256-1264.	0.4	160
93	Intraprostatic Steroidogenic Enzymes – Response. Cancer Research, 2010, 70, 8249-8250.	0.4	2
94	Systematic Structure-Function Analysis of Androgen Receptor Leu701 Mutants Explains the Properties of the Prostate Cancer Mutant L701H. Journal of Biological Chemistry, 2010, 285, 5097-5105.	1.6	48
95	Overexpression of Prostate-Specific <i>TMPRSS2(exon 0)-ERG</i> Fusion Transcripts Corresponds with Favorable Prognosis of Prostate Cancer. Clinical Cancer Research, 2009, 15, 6398-6403.	3.2	81
96	FoxO1 Mediates PTEN Suppression of Androgen Receptor N- and C-Terminal Interactions and Coactivator Recruitment. Molecular Endocrinology, 2009, 23, 213-225.	3.7	63
97	Functional Screening of FxxLF-Like Peptide Motifs Identifies SMARCD1/BAF60a as an Androgen Receptor Cofactor that Modulates TMPRSS2 Expression. Molecular Endocrinology, 2009, 23, 1776-1786.	3.7	36
98	Exosomal Secretion of Cytoplasmic Prostate Cancer Xenograft-derived Proteins. Molecular and Cellular Proteomics, 2009, 8, 1192-1205.	2.5	98
99	Screening for Prostate Cancer in 2008 II: The Importance of Molecular Subforms of Prostate-Specific Antigen and Tissue Kallikreins. European Urology, 2009, 55, 563-574.	0.9	45
100	ETS Gene Fusions in Prostate Cancer: From Discovery to Daily Clinical Practice. European Urology, 2009, 56, 275-286.	0.9	332
101	The FOXF2 pathway in the human prostate stroma. Prostate, 2009, 69, 1538-1547.	1.2	26
102	Gene expression of forkhead transcription factors in the normal and diseased human prostate. BJU International, 2009, 103, 1574-1580.	1.3	69
103	Two Unique Novel Prostate-Specific and Androgen-Regulated Fusion Partners of <i>ETV4</i> in Prostate Cancer. Cancer Research, 2008, 68, 3094-3098.	0.4	92
104	Truncated ETV1, Fused to Novel Tissue-Specific Genes, and Full-Length ETV1 in Prostate Cancer. Cancer Research, 2008, 68, 7541-7549.	0.4	86
105	Identification of leptomeningeal metastasis-related proteins in cerebrospinal fluid of patients with breast cancer by a combination of MALDI-TOF, MALDI-FTICR and nanoLC-FTICR MS. Proteomics, 2007, 7, 474-481.	1.3	49
106	Gene expression profiling of the human prostate zones. BJU International, 2006, 98, 886-897.	1.3	62
107	The Human PC346 Xenograft and Cell Line Panel: A Model System for Prostate Cancer Progression. European Urology, 2006, 49, 245-257.	0.9	81
108	Androgen Receptor Ligand-Binding Domain Interaction and Nuclear Receptor Specificity of FXXLF and LXXLL Motifs as Determined by L/F Swapping. Molecular Endocrinology, 2006, 20, 1742-1755.	3.7	42

#	Article	IF	CITATIONS
109	Evolution of the Androgen Receptor Pathway during Progression of Prostate Cancer. Cancer Research, 2006, 66, 5012-5020.	0.4	187
110	Mass Spectrometric Identification of Human Prostate Cancer-derived Proteins in Serum of Xenograft-bearing Mice. Molecular and Cellular Proteomics, 2006, 5, 1830-1839.	2.5	45
111	TMPRSS2:ERG Fusion by Translocation or Interstitial Deletion Is Highly Relevant in Androgen-Dependent Prostate Cancer, But Is Bypassed in Late-Stage Androgen Receptor–Negative Prostate Cancer. Cancer Research, 2006, 66, 10658-10663.	0.4	212
112	Novel FXXFF and FXXMF Motifs in Androgen Receptor Cofactors Mediate High Affinity and Specific Interactions with the Ligand-binding Domain. Journal of Biological Chemistry, 2006, 281, 19407-19416.	1.6	58
113	Storing, linking, and mining microarray databases using SRS. BMC Bioinformatics, 2005, 6, 192.	1.2	12
114	Androgen receptor modifications in prostate cancer cells upon long-termandrogen ablation and antiandrogen treatment. International Journal of Cancer, 2005, 117, 221-229.	2.3	66
115	MALDI-TOF Mass Spectrometry Analysis of Cerebrospinal Fluid Tryptic Peptide Profiles to Diagnose Leptomeningeal Metastases in Patients with Breast Cancer. Molecular and Cellular Proteomics, 2005, 4, 1341-1349.	2.5	76
116	Recruitment of the Androgen Receptor via Serum Response Factor Facilitates Expression of a Myogenic Gene. Journal of Biological Chemistry, 2005, 280, 7786-7792.	1.6	45
117	The TRPS1 transcription factor: androgenic regulation in prostate cancer and high expression in breast cancer. Endocrine-Related Cancer, 2004, 11, 815-822.	1.6	30
118	Negative Modulation of Androgen Receptor Transcriptional Activity by Daxx. Molecular and Cellular Biology, 2004, 24, 10529-10541.	1.1	109
119	Glycogen Synthase Kinase-3β Is Involved in the Phosphorylation and Suppression of Androgen Receptor Activity. Journal of Biological Chemistry, 2004, 279, 19191-19200.	1.6	80
120	A visualisation concept of dynamic signalling networks. Molecular and Cellular Endocrinology, 2004, 218, 1-6.	1.6	12
121	Use of artificial androgen receptor coactivators to alter myoblast proliferation. Journal of Steroid Biochemistry and Molecular Biology, 2004, 91, 111-119.	1.2	8
122	AKT-Independent Protection of Prostate Cancer Cells from Apoptosis Mediated through Complex Formation between the Androgen Receptor and FKHR. Molecular and Cellular Biology, 2003, 23, 104-118.	1.1	149
123	Venn Mapping: clustering of heterologous microarray data based on the number of co-occurring differentially expressed genes. Bioinformatics, 2003, 19, 2065-2071.	1.8	65
124	Repression of androgen-regulated gene expression by dominant negative androgen receptors. Molecular and Cellular Endocrinology, 2001, 183, 19-28.	1.6	19
125	Androgen regulation of the cell–cell adhesion molecule-1 (Ceacam1) gene. Molecular and Cellular Endocrinology, 2001, 184, 115-123.	1.6	11
126	Ligand-independent activation of the androgen receptor in prostate cancer by growth factors and cytokines. Journal of Pathology, 2000, 191, 227-228.	2.1	49

#	Article	IF	CITATIONS
127	Androgen Induction of Cyclin-Dependent Kinase Inhibitor p21 Gene: Role of Androgen Receptor and Transcription Factor Sp1 Complex. Molecular Endocrinology, 2000, 14, 753-760.	3.7	150
128	Specific Androgen Receptor Activation by an Artificial Coactivator. Journal of Biological Chemistry, 1999, 274, 9449-9454.	1.6	30
129	Coactivators and corepressors as mediators of nuclear receptor function: An update. Molecular and Cellular Endocrinology, 1998, 143, 1-7.	1.6	100
130	Steroid receptor coactivator-1 is a histone acetyltransferase. Nature, 1997, 389, 194-198.	13.7	1,153
131	Domains of the human androgen receptor and glucocorticoid receptor involved in binding to the nuclear matrix. Journal of Cellular Biochemistry, 1995, 57, 465-478.	1.2	93
132	Identification of Two Transcription Activation Units in the N-terminal Domain of the Human Androgen Receptor. Journal of Biological Chemistry, 1995, 270, 7341-7346.	1.6	340
133	Changes in the Abundance of Androgen Receptor Isotypes: Effects of Ligand Treatment, Glutamine-Stretch Variation, and Mutation of Putative Phosphorylation Sites. Biochemistry, 1994, 33, 14064-14072.	1.2	99
134	Domains of the Human Androgen Receptor Involved in Steroid Binding, Transcriptional Activation, and Subcellular Localization. Molecular Endocrinology, 1991, 5, 1396-1404.	3.7	479
135	Humanbcr-abl gene has a lethal effect on embryogenesis. Transgenic Research, 1991, 1, 45-53.	1.3	64
136	Acute leukaemia in bcr/abl transgenic mice. Nature, 1990, 344, 251-253.	13.7	686
137	Cell Line Characteristics Predict Subsequent Resistance to Androgen Receptor-Targeted Agents (ARTA)	1.3	0

in Preclinical Models of Prostate Cancer. Frontiers in Oncology, 0, 12, .