List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/65382/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Obesity-Associated Hypertension. Hypertension, 2005, 45, 9-14.	1.3	688
2	A guide to analysis of mouse energy metabolism. Nature Methods, 2012, 9, 57-63.	9.0	655
3	Hypothalamic AMPK and fatty acid metabolism mediate thyroid regulation of energy balance. Nature Medicine, 2010, 16, 1001-1008.	15.2	581
4	BMP8B Increases Brown Adipose Tissue Thermogenesis through Both Central and Peripheral Actions. Cell, 2012, 149, 871-885.	13.5	481
5	FGF21 Acts Centrally to Induce Sympathetic Nerve Activity, Energy Expenditure, and Weight Loss. Cell Metabolism, 2014, 20, 670-677.	7.2	403
6	Estradiol Regulates Brown Adipose Tissue Thermogenesis via Hypothalamic AMPK. Cell Metabolism, 2014, 20, 41-53.	7.2	342
7	The central melanocortin system directly controls peripheral lipid metabolism. Journal of Clinical Investigation, 2007, 117, 3475-3488.	3.9	341
8	The cellular and molecular bases of leptin and ghrelin resistance in obesity. Nature Reviews Endocrinology, 2017, 13, 338-351.	4.3	304
9	Role of Selective Leptin Resistance in Diet-Induced Obesity Hypertension. Diabetes, 2005, 54, 2012-2018.	0.3	289
10	Requirement of Bardet-Biedl syndrome proteins for leptin receptor signaling. Human Molecular Genetics, 2009, 18, 1323-1331.	1.4	272
11	FGF21 Mediates Endocrine Control of Simple Sugar Intake and Sweet Taste Preference by the Liver. Cell Metabolism, 2016, 23, 335-343.	7.2	270
12	A knockin mouse model of the Bardet–Biedl syndrome 1 M390R mutation has cilia defects, ventriculomegaly, retinopathy, and obesity. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 19422-19427.	3.3	237
13	AgRP Neurons Control Systemic Insulin Sensitivity via Myostatin Expression in Brown Adipose Tissue. Cell, 2016, 165, 125-138.	13.5	222
14	SIRT1 Deacetylase in POMC Neurons Is Required for Homeostatic Defenses against Diet-Induced Obesity. Cell Metabolism, 2010, 12, 78-87.	7.2	216
15	The Concept of Selective Leptin Resistance: Evidence From Agouti Yellow Obese Mice. Diabetes, 2002, 51, 439-442.	0.3	202
16	Leptin resistance contributes to obesity and hypertension in mouse models of Bardet-Biedl syndrome. Journal of Clinical Investigation, 2008, 118, 1458-1467.	3.9	201
17	Central Ceramide-Induced Hypothalamic Lipotoxicity and ER Stress Regulate Energy Balance. Cell Reports, 2014, 9, 366-377.	2.9	195
18	Direct Control of Brown Adipose Tissue Thermogenesis by Central Nervous System Glucagon-Like Peptide-1 Receptor Signaling. Diabetes, 2012, 61, 2753-2762.	0.3	188

#	Article	IF	CITATIONS
19	The Ion Channel ASIC2 Is Required for Baroreceptor and Autonomic Control of the Circulation. Neuron, 2009, 64, 885-897.	3.8	186
20	FGF19, FGF21, and an FGFR1/β-Klotho-Activating Antibody Act on the Nervous System to Regulate Body Weight and Glycemia. Cell Metabolism, 2017, 26, 709-718.e3.	7.2	184
21	Mkks-null mice have a phenotype resembling Bardet–Biedl syndrome. Human Molecular Genetics, 2005, 14, 1109-1118.	1.4	181
22	Brain mineralocorticoid receptors and centrally regulated functions. Kidney International, 2000, 57, 1329-1336.	2.6	180
23	Selective leptin resistance: a new concept in leptin physiology with cardiovascular implications. Journal of Hypertension, 2002, 20, 1245-1250.	0.3	178
24	Role of Melanocortin-4 Receptors in Mediating Renal Sympathoactivation to Leptin and Insulin. Journal of Neuroscience, 2003, 23, 5998-6004.	1.7	169
25	Hypothalamic ERK Mediates the Anorectic and Thermogenic Sympathetic Effects of Leptin. Diabetes, 2009, 58, 536-542.	0.3	169
26	Hypothalamic AMPK-ER Stress-JNK1 Axis Mediates the Central Actions of Thyroid Hormones on Energy Balance. Cell Metabolism, 2017, 26, 212-229.e12.	7.2	167
27	Hypothalamic PI3K and MAPK differentially mediate regional sympathetic activation to insulin. Journal of Clinical Investigation, 2004, 114, 652-658.	3.9	162
28	A leptin–BDNF pathway regulating sympathetic innervation of adipose tissue. Nature, 2020, 583, 839-844.	13.7	161
29	Hypothalamic Arcuate Nucleus Mediates the Sympathetic and Arterial Pressure Responses to Leptin. Hypertension, 2007, 49, 647-652.	1.3	159
30	Direct Control of Peripheral Lipid Deposition by CNS GLP-1 Receptor Signaling Is Mediated by the Sympathetic Nervous System and Blunted in Diet-Induced Obesity. Journal of Neuroscience, 2009, 29, 5916-5925.	1.7	144
31	The Brain Renin-Angiotensin System Controls Divergent Efferent Mechanisms to Regulate Fluid and Energy Balance. Cell Metabolism, 2010, 12, 431-442.	7.2	140
32	Bardet-Biedl syndrome 3 (Bbs3) knockout mouse model reveals common BBS-associated phenotypes and Bbs3 unique phenotypes. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 20678-20683.	3.3	135
33	Ablation of the Leptin Receptor in the Hypothalamic Arcuate Nucleus Abrogates Leptin-Induced Sympathetic Activation. Circulation Research, 2011, 108, 808-812.	2.0	128
34	The brain and brown fat. Annals of Medicine, 2015, 47, 150-168.	1.5	124
35	Enhanced Leptin-Stimulated Pi3k Activation in the CNS Promotes White Adipose Tissue Transdifferentiation. Cell Metabolism, 2007, 6, 431-445.	7.2	121
36	Leptin Signaling in the Nucleus Tractus Solitarii Increases Sympathetic Nerve Activity to the Kidney. Hypertension, 2009, 53, 375-380.	1.3	118

3

#	Article	IF	CITATIONS
37	Selective Resistance to Central Neural Administration of Leptin in Agouti Obese Mice. Hypertension, 2002, 39, 486-490.	1.3	114
38	Mediation of the Acute Stress Response by the Skeleton. Cell Metabolism, 2019, 30, 890-902.e8.	7.2	110
39	A brain leptin-renin angiotensin system interaction in the regulation of sympathetic nerve activity. American Journal of Physiology - Heart and Circulatory Physiology, 2012, 303, H197-H206.	1.5	105
40	Adipocyte-secreted BMP8b mediates adrenergic-induced remodeling of the neuro-vascular network in adipose tissue. Nature Communications, 2018, 9, 4974.	5.8	104
41	Adipose depot-specific modulation of angiotensinogen gene expression in diet-induced obesity. American Journal of Physiology - Endocrinology and Metabolism, 2004, 286, E891-E895.	1.8	103
42	Role of leptin in the cardiovascular and endocrine complications of metabolic syndrome. Diabetes, Obesity and Metabolism, 2006, 8, 603-610.	2.2	103
43	Obesity-Associated Hypertension. Hypertension, 2014, 64, 215-221.	1.3	101
44	Glucose Depletion in the Airway Surface Liquid Is Essential for Sterility of the Airways. PLoS ONE, 2011, 6, e16166.	1.1	99
45	Leptin and the Cardiovascular System. Endocrine Reviews, 2004, 59, 225-244.	7.1	98
46	Intracellular Mechanisms Involved in Leptin Regulation of Sympathetic Outflow. Hypertension, 2003, 41, 763-767.	1.3	97
47	The BBSome Controls Energy Homeostasis by Mediating the Transport of the Leptin Receptor to the Plasma Membrane. PLoS Genetics, 2016, 12, e1005890.	1.5	97
48	Leptin as a Mediator of Obesity-Induced Hypertension. Current Obesity Reports, 2016, 5, 397-404.	3.5	96
49	Food Perception Primes Hepatic ER Homeostasis via Melanocortin-Dependent Control of mTOR Activation. Cell, 2018, 175, 1321-1335.e20.	13.5	86
50	Mechanisms mediating renal sympathetic activation to leptin in obesity. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2008, 295, R1730-R1736.	0.9	83
51	Hypothalamic mTORC1 Signaling Controls Sympathetic Nerve Activity and Arterial Pressure and Mediates Leptin Effects. Cell Metabolism, 2013, 17, 599-606.	7.2	81
52	Central Melanin-Concentrating Hormone Influences Liver and Adipose Metabolism Via Specific Hypothalamic Nuclei and Efferent Autonomic/JNK1 Pathways. Gastroenterology, 2013, 144, 636-649.e6.	0.6	79
53	Molecular basis of the obesity associated with Bardet–Biedl syndrome. Trends in Endocrinology and Metabolism, 2011, 22, 286-93	3.1	75
54	Involvement of Hypothalamic AMP-Activated Protein Kinase in Leptin-Induced Sympathetic Nerve Activation. PLoS ONE, 2013, 8, e56660.	1.1	75

#	Article	IF	CITATIONS
55	Leptin-Induced Sympathetic Nerve Activation: Signaling Mechanisms and Cardiovascular Consequences in Obesity. Current Hypertension Reviews, 2010, 6, 104-109.	0.5	74
56	Contrasting effects of afferent and efferent vagal nerve stimulation on insulin secretion and blood glucose regulation. Physiological Reports, 2016, 4, e12718.	0.7	74
57	Traveling from the hypothalamus to the adipose tissue: The thermogenic pathway. Redox Biology, 2017, 12, 854-863.	3.9	74
58	Intracranial Pressure Is a Determinant of Sympathetic Activity. Frontiers in Physiology, 2018, 9, 11.	1.3	71
59	Obesity-associated hyperleptinemia alters the gliovascular interface of the hypothalamus to promote hypertension. Cell Metabolism, 2021, 33, 1155-1170.e10.	7.2	68
60	ER Stress Inhibits Liver Fatty Acid Oxidation while Unmitigated Stress Leads to Anorexia-Induced Lipolysis and Both Liver and Kidney Steatosis. Cell Reports, 2017, 19, 1794-1806.	2.9	67
61	Liver sympathetic denervation reverses obesityâ€induced hepatic steatosis. Journal of Physiology, 2019, 597, 4565-4580.	1.3	65
62	Liver Derived FGF21 Maintains Core Body Temperature During Acute Cold Exposure. Scientific Reports, 2019, 9, 630.	1.6	63
63	Regulation of Glucose Tolerance and Sympathetic Activity by MC4R Signaling in the Lateral Hypothalamus. Diabetes, 2015, 64, 1976-1987.	0.3	62
64	Angiotensin AT1A receptors on leptin receptor–expressing cells control resting metabolism. Journal of Clinical Investigation, 2017, 127, 1414-1424.	3.9	59
65	Regulation of Insulin Receptor Trafficking by Bardet Biedl Syndrome Proteins. PLoS Genetics, 2015, 11, e1005311.	1.5	57
66	Oxidative and inflammatory signals in obesity-associated vascular abnormalities. Clinical Science, 2017, 131, 1689-1700.	1.8	57
67	A leptin-sympathetic-leptin feedback loop: potential implications for regulation of arterial pressure and body fat. Acta Physiologica Scandinavica, 2003, 177, 345-349.	2.3	55
68	Exposure to Static Magnetic and Electric Fields Treats Type 2 Diabetes. Cell Metabolism, 2020, 32, 561-574.e7.	7.2	55
69	Leptin Receptor Signaling in the Hypothalamus Regulates Hepatic Autonomic Nerve Activity via Phosphatidylinositol 3-Kinase and AMP-Activated Protein Kinase. Journal of Neuroscience, 2015, 35, 474-484.	1.7	54
70	Differential contribution of POMC and AgRP neurons to the regulation of regional autonomic nerve activity by leptin. Molecular Metabolism, 2018, 8, 1-12.	3.0	54
71	Neuronal Receptor Activity–Modifying Protein 1 Promotes Energy Expenditure in Mice. Diabetes, 2011, 60, 1063-1071.	0.3	53
72	Cardiovascular and sympathetic effects of leptin. Current Hypertension Reports, 2002, 4, 119-125.	1.5	50

5

#	Article	IF	CITATIONS
73	Involvement of Brain Mineralocorticoid Receptor in Salt-Enhanced Hypertension in Spontaneously Hypertensive Rats. Hypertension, 2001, 38, 902-906.	1.3	48
74	Three Months of High-Fructose Feeding Fails to Induce Excessive Weight Gain or Leptin Resistance in Mice. PLoS ONE, 2014, 9, e107206.	1.1	48
75	SF1-Specific AMPKα1 Deletion Protects Against Diet-Induced Obesity. Diabetes, 2018, 67, 2213-2226.	0.3	48
76	Endothelial effects of leptin: Implications in health and diseases. Current Diabetes Reports, 2005, 5, 260-266.	1.7	46
77	Obesity, Sympathetic Overdrive, and Hypertension. Hypertension, 2010, 55, 844-845.	1.3	45
78	Amylin Acts in the Central Nervous System to Increase Sympathetic Nerve Activity. Endocrinology, 2013, 154, 2481-2488.	1.4	45
79	OPA1 deletion in brown adipose tissue improves thermoregulation and systemic metabolism via FGF21. ELife, 2021, 10, .	2.8	45
80	Small extracellular vesicle-mediated targeting of hypothalamic AMPKα1 corrects obesity through BAT activation. Nature Metabolism, 2021, 3, 1415-1431.	5.1	45
81	Selective Deletion of the Brain-Specific Isoform of Renin Causes Neurogenic Hypertension. Hypertension, 2016, 68, 1385-1392.	1.3	43
82	Leptin signaling pathways in the central nervous system: interactions between neuropeptide Y and melanocortins. BioEssays, 2001, 23, 1095-1099.	1.2	42
83	Chronic vagal nerve stimulation prevents high-salt diet-induced endothelial dysfunction and aortic stiffening in stroke-prone spontaneously hypertensive rats. American Journal of Physiology - Heart and Circulatory Physiology, 2016, 311, H276-H285.	1.5	42
84	Cardiovascular Regulation by the Arcuate Nucleus of the Hypothalamus. Hypertension, 2016, 67, 1064-1071.	1.3	41
85	A Mitochondrial-Targeted Coenzyme Q Analog Prevents Weight Gain and Ameliorates Hepatic Dysfunction in High-Fat–Fed Mice. Journal of Pharmacology and Experimental Therapeutics, 2014, 351, 699-708.	1.3	39
86	The Role of Hypothalamic mTORC1 Signaling in Insulin Regulation of Food Intake, Body Weight, and Sympathetic Nerve Activity in Male Mice. Endocrinology, 2015, 156, 1398-1407.	1.4	38
87	Suppression of Resting Metabolism by the Angiotensin AT 2 Receptor. Cell Reports, 2016, 16, 1548-1560.	2.9	36
88	Brain Mineralocorticoid Receptor Control of Blood Pressure and Kidney Function in Normotensive Rats. Hypertension, 1999, 33, 1201-1206.	1.3	35
89	The â^'20 and â^'217 Promoter Variants Dominate Differential Angiotensinogen Haplotype Regulation in Angiotensinogen-Expressing Cells. Hypertension, 2007, 49, 631-639.	1.3	35
90	Prolonged treatment with angiotensin 1–7 improves endothelial function in diet-induced obesity. Journal of Hypertension, 2013, 31, 730-738.	0.3	35

#	Article	IF	CITATIONS
91	Calcium/Calmodulinâ€Dependent Kinase II Inhibition in Smooth Muscle Reduces Angiotensin II–Induced Hypertension by Controlling Aortic Remodeling and Baroreceptor Function. Journal of the American Heart Association, 2015, 4, e001949.	1.6	35
92	Neuronal modulation of brown adipose activity through perturbation of white adipocyte lipogenesis. Molecular Metabolism, 2018, 16, 116-125.	3.0	34
93	MCH Regulates SIRT1/FoxO1 and Reduces POMC Neuronal Activity to Induce Hyperphagia, Adiposity, and Glucose Intolerance. Diabetes, 2019, 68, 2210-2222.	0.3	34
94	Neuroanatomical determinants of the sympathetic nerve responses evoked by leptin. Clinical Autonomic Research, 2013, 23, 1-7.	1.4	33
95	Beta-adrenergic receptors are critical for weight loss but not for other metabolic adaptations to the consumption of a ketogenic diet in male mice. Molecular Metabolism, 2017, 6, 854-862.	3.0	33
96	Central nicotine induces browning through hypothalamic κ opioid receptor. Nature Communications, 2019, 10, 4037.	5.8	32
97	The BBSome in POMC and AgRP Neurons Is Necessary for Body Weight Regulation and Sorting of Metabolic Receptors. Diabetes, 2019, 68, 1591-1603.	0.3	32
98	Endocannabinoid Receptor-1 and Sympathetic Nervous System Mediate the Beneficial Metabolic Effects of Gastric Bypass. Cell Reports, 2020, 33, 108270.	2.9	31
99	Loss of Leptin Actions in Obesity: Two Concepts with Cardiovascular Implications. Clinical and Experimental Hypertension, 2004, 26, 629-636.	0.5	30
100	Differential effects of insulin on sympathetic nerve activity in agouti obese mice. Journal of Hypertension, 2010, 28, 1913-1919.	0.3	30
101	Reduced renal sympathetic nerve activity contributes to elevated glycosuria and improved glucose tolerance in hypothalamus-specific Pomc knockout mice. Molecular Metabolism, 2017, 6, 1274-1285.	3.0	29
102	Celastrol Reduces Obesity in MC4R Deficiency and Stimulates Sympathetic Nerve Activity Affecting Metabolic and Cardiovascular Functions. Diabetes, 2019, 68, 1210-1220.	0.3	28
103	Liver-derived FGF21 is essential for full adaptation to ketogenic diet but does not regulate glucose homeostasis. Endocrine, 2020, 67, 95-108.	1.1	28
104	Effects of brain mineralocorticoid receptor blockade on blood pressure and renal functions in DOCA–salt hypertension. European Journal of Pharmacology, 2002, 436, 207-216.	1.7	26
105	Inactivation of Bardet-Biedl syndrome genes causes kidney defects. American Journal of Physiology - Renal Physiology, 2011, 300, F574-F580.	1.3	26
106	Metabolic rate regulation by the renin–angiotensin system: brain vs. body. Pflugers Archiv European Journal of Physiology, 2013, 465, 167-175.	1.3	26
107	KATP-Channel-Dependent Regulation of Catecholaminergic Neurons Controls BAT Sympathetic Nerve Activity and Energy Homeostasis. Cell Metabolism, 2013, 18, 445-455.	7.2	25
108	Ciliopathy Is Differentially Distributed in the Brain of a Bardet-Biedl Syndrome Mouse Model. PLoS ONE, 2014, 9, e93484.	1.1	25

#	Article	IF	CITATIONS
109	Hypertension-Causing Mutation in Peroxisome Proliferator–Activated Receptor γ Impairs Nuclear Export of Nuclear Factor-κB p65 in Vascular Smooth Muscle. Hypertension, 2017, 70, 174-182.	1.3	25
110	A leptin-regulated circuit controls glucose mobilization during noxious stimuli. Journal of Clinical Investigation, 2017, 127, 3103-3113.	3.9	25
111	Activation of ADAM17 (A Disintegrin and Metalloprotease 17) on Glutamatergic Neurons Selectively Promotes Sympathoexcitation. Hypertension, 2019, 73, 1266-1274.	1.3	24
112	Mechanistic Target of Rapamycin Complex 1 Signaling Modulates Vascular Endothelial Function Through Reactive Oxygen Species. Journal of the American Heart Association, 2019, 8, e010662.	1.6	24
113	Ectopic Expression of Human BBS4 Can Rescue Bardet-Biedl Syndrome Phenotypes in Bbs4 Null Mice. PLoS ONE, 2013, 8, e59101.	1.1	23
114	Single-Nucleus RNA Sequencing of the Hypothalamic Arcuate Nucleus of C57BL/6J Mice After Prolonged Diet-Induced Obesity. Hypertension, 2020, 76, 589-597.	1.3	23
115	Metabolic effects of a mitochondrial-targeted coenzyme Q analog in high fat fed obese mice. Pharmacology Research and Perspectives, 2017, 5, e00301.	1.1	22
116	Optogenetics and pharmacogenetics: principles and applications. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2017, 313, R633-R645.	0.9	22
117	cAMP-inducible coactivator CRTC3 attenuates brown adipose tissue thermogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E5289-E5297.	3.3	22
118	PI3K signaling: A key pathway in the control of sympathetic traffic and arterial pressure by leptin. Molecular Metabolism, 2013, 2, 69-73.	3.0	21
119	Central PACAP mediates the sympathetic effects of leptin in a tissue-specific manner. Neuroscience, 2013, 238, 297-304.	1.1	21
120	Angiotensin type 1a receptors in the forebrain subfornical organ facilitate leptin-induced weight loss through brown adipose tissue thermogenesis. Molecular Metabolism, 2015, 4, 337-343.	3.0	21
121	Leptin and the central neural mechanisms of obesity hypertension. Drugs of Today, 2002, 38, 807.	2.4	21
122	Cardiovascular and Sympathetic Effects of Disrupting Tyrosine 985 of the Leptin Receptor. Hypertension, 2011, 57, 627-632.	1.3	20
123	Metabolic Control by S6 Kinases Depends on Dietary Lipids. PLoS ONE, 2012, 7, e32631.	1.1	20
124	Activation of hypothalamic AgRP and POMC neurons evokes disparate sympathetic and cardiovascular responses. American Journal of Physiology - Heart and Circulatory Physiology, 2020, 319, H1069-H1077.	1.5	20
125	Failure to vasodilate in response to salt loading blunts renal blood flow and causes salt-sensitive hypertension. Cardiovascular Research, 2021, 117, 308-319.	1.8	20
126	Nicotine' actions on energy balance: Friend or foe?. , 2021, 219, 107693.		20

#	Article	IF	CITATIONS
127	Selective Deletion of Renin-b in the Brain Alters Drinking and Metabolism. Hypertension, 2017, 70, 990-997.	1.3	18
128	Orexin receptors 1 and 2 in serotonergic neurons differentially regulate peripheral glucose metabolism in obesity. Nature Communications, 2021, 12, 5249.	5.8	17
129	Hypothalamic MC4R regulates glucose homeostasis through adrenaline-mediated control of glucose reabsorption via renal GLUT2 in mice. Diabetologia, 2021, 64, 181-194.	2.9	16
130	Influence of sodium intake on the cardiovascular and renal effects of brain mineralocorticoid receptor blockade in normotensive rats. Journal of Hypertension, 2002, 20, 1829-1834.	0.3	15
131	BBSome ablation in SF1 neurons causes obesity without comorbidities. Molecular Metabolism, 2021, 48, 101211.	3.0	15
132	Id3, E47, and SREBP-1c. Circulation Research, 2008, 103, 565-567.	2.0	14
133	Contrasting vascular effects caused by loss of Bardet-Biedl syndrome genes. American Journal of Physiology - Heart and Circulatory Physiology, 2010, 299, H1902-H1907.	1.5	14
134	Nervous System Expression of PPARÎ ³ and Mutant PPARÎ ³ Has Profound Effects on Metabolic Regulation and Brain Development. Endocrinology, 2016, 157, 4266-4275.	1.4	14
135	Interference With Peroxisome Proliferator-Activated Receptor-Î ³ in Vascular Smooth Muscle Causes Baroreflex Impairment and Autonomic Dysfunction. Hypertension, 2014, 64, 590-596.	1.3	13
136	Effect of selective expression of dominant-negative PPARÎ ³ in pro-opiomelanocortin neurons on the control of energy balance. Physiological Genomics, 2016, 48, 491-501.	1.0	13
137	Lack of dilator effect of leptin in the hindlimb vascular bed of conscious rats. European Journal of Pharmacology, 2005, 518, 175-181.	1.7	12
138	Neonatal leptin deficiency reduces frontal cortex volumes and programs adult hyperactivity in mice. Behavioural Brain Research, 2014, 263, 115-121.	1.2	12
139	The Bardet-Biedl syndrome protein complex regulates cell migration and tissue repair through a Cullin-3/RhoA pathway. American Journal of Physiology - Cell Physiology, 2019, 317, C457-C465.	2.1	12
140	BBSome: a New Player in Hypertension and Other Cardiovascular Risks. Hypertension, 2022, 79, 303-313.	1.3	12
141	Inflaming Hypothalamic Neurons Raises Blood Pressure. Cell Metabolism, 2011, 14, 3-4.	7.2	11
142	Smooth Muscle Cell–Specific Disruption of the BBSome Causes Vascular Dysfunction. Hypertension, 2019, 74, 817-825.	1.3	11
143	mTORC1 (Mechanistic Target of Rapamycin Complex 1) Signaling in Endothelial and Smooth Muscle Cells Is Required for Vascular Function. Hypertension, 2021, 77, 594-604.	1.3	11
144	Cardiovascular and renal effects of central administration of a mineralocorticoid receptor antagonist in conscious female rats. European Journal of Pharmacology, 1999, 385, 199-202.	1.7	10

#	Article	IF	CITATIONS
145	The Adipose/Circulating Renin-Angiotensin System Cross-Talk Enters a New Dimension. Hypertension, 2012, 60, 1389-1390.	1.3	10
146	mTORC1 Signaling Contributes to Drinking But Not Blood Pressure Responses to Brain Angiotensin II. Endocrinology, 2016, 157, 3140-3148.	1.4	10
147	DIFFERENTIAL CONTROL OF THE SYMPATHETIC NERVOUS SYSTEM BY LEPTIN: IMPLICATIONS FOR OBESITY. Clinical and Experimental Pharmacology and Physiology, 2007, 34, S8-S10.	0.9	9
148	Sympathetic Inhibition After Bariatric Surgery. Hypertension, 2014, 64, 235-236.	1.3	8
149	Effects of leptin on sympathetic nerve activity in conscious mice. Physiological Reports, 2015, 3, e12554.	0.7	8
150	Increased Susceptibility of Mice Lacking Renin-b to Angiotensin Il–Induced Organ Damage. Hypertension, 2020, 76, 468-477.	1.3	8
151	Cardiovascular Regulation by the Neuronal BBSome. Hypertension, 2020, 75, 1082-1090.	1.3	7
152	Endothelial BBSome is essential for vascular, metabolic, and retinal functions. Molecular Metabolism, 2021, 53, 101308.	3.0	6
153	Obesity induces resistance to central action of BMP8B through a mechanism involving the BBSome. Molecular Metabolism, 2022, 59, 101465.	3.0	6
154	Neonatal growth restriction-related leptin deficiency enhances leptin-triggered sympathetic activation and central angiotensin II receptor-dependent stress-evoked hypertension. Pediatric Research, 2016, 80, 244-251.	1.1	5
155	Sympathetic Tone in the Young. Hypertension, 2010, 55, 21-22.	1.3	4
156	Counterpoint: An alternative hypothesis for why exposure to static magnetic and electric fields treats type 2 diabetes. American Journal of Physiology - Endocrinology and Metabolism, 2021, 320, E1001-E1002.	1.8	4
157	Gastric Bypass Sensitizes Sympathetic and Thermogenic Activity of Brown Adipose Tissue to Cold Exposure. Obesity Surgery, 2021, 31, 4653-4656.	1.1	3
158	Peripheral Chemoreceptors Contribute Significantly to Hypertension in Spontaneously Hypertensive Rats (SHR). FASEB Journal, 2012, 26, 703.15.	0.2	3
159	Brain effects of leptin: What intracellular mechanism?. Current Diabetes Reports, 2003, 3, 427-429.	1.7	2
160	Vascular effects of disrupting endothelial mTORC1 signaling in obesity. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2021, 321, R228-R237.	0.9	2
161	Modulation of Blood Glucose Concentration by Vagal Nerve Stimulation. FASEB Journal, 2015, 29, 828.6.	0.2	2
162	Melanocortin MC ₄ R receptor is required for energy expenditure but not blood pressure effects of angiotensin II within the mouse brain. Physiological Genomics, 2022, 54, 196-205.	1.0	2

#	Article	IF	CITATIONS
163	Leptin Signaling in the Central Nervous System. , 2004, , 86-VI.		1
164	Bardetâ€Biedl Syndrome (BBS) Proteins in POMC Neurons are Required for Energy Homeostasis. FASEB Journal, 2015, 29, 655.12.	0.2	1
165	Crosstalk in the Central Autonomic Neurocircuitry Underlying Cardiovascular and Metabolic Control. FASEB Journal, 2022, 36, .	0.2	1
166	Does Genetic Variation in the Leptin Receptor Influence the Sympathetic Tone in Obesity?. Hypertension Research, 2008, 31, 1057-1059.	1.5	0
167	Editorial Focus: A fat contribution to RAS activation and blood pressure control: evidence from angiotensinogen conditional null mice. Focus on: "Adipocyte-specific deficiency of angiotensinogen decreases plasma angiotensinogen concentration and systolic blood pressure in mice.â€r American	0.9	0
168	Leptin Signaling and Energy Homeostasis. , 2012, , 131-134.		0
169	Bardetâ€Biedl syndrome 3 gene in POMC neurons is required for glucose homeostasis. FASEB Journal, 2021, 35, .	0.2	Ο
170	Reply to Petersen et al.: An alternative hypothesis for why exposure to static magnetic and electric fields treats type 2 diabetes. American Journal of Physiology - Endocrinology and Metabolism, 2021, 320, E1004-E1005.	1.8	0
171	Defining the Neurocircuit Underlying Autonomic Control of Cardiovascular and Metabolic Functions. FASEB Journal, 2021, 35, .	0.2	0
172	Pathophysiological mechanisms of obesity and hypertension in mouse models of Bardetâ€Biedl syndrome. FASEB Journal, 2006, 20, A1207.	0.2	0
173	Role of PI3 kinase in mediating renal sympathoactivation to leptin in obesity. FASEB Journal, 2007, 21, A1193.	0.2	0
174	The selectivity of leptin resistance depends on the severity of dietâ€induced obesity in normotensive and borderline hypertensive mice. FASEB Journal, 2007, 21, A459.	0.2	0
175	Leptin signaling in the nucleus tractus solitarii increases sympathetic outflow to the kidney FASEB Journal, 2008, 22, 969.13.	0.2	0
176	Melanocortin receptors mediate renal sympathetic activation to leptin in obesity. FASEB Journal, 2008, 22, 1167.3.	0.2	0
177	Mutation of Tyr985 of the leptin receptor differentially alters regional sympathetic activation to leptin. FASEB Journal, 2010, 24, 809.22.	0.2	0
178	Evidence for chemosensitive fibers in the aortic depressor nerve in mice but not in rats. FASEB Journal, 2012, 26, 892.6.	0.2	0
179	Bardet Biedl syndrome genes are required for autonomic control of the circulation. FASEB Journal, 2012, 26, 891.17.	0.2	0
180	mTOR/S6K Signaling: A Novel Effector of Neuronal Action of Angiotensin II. FASEB Journal, 2012, 26, 1093.3.	0.2	0

#	Article	IF	CITATIONS
181	Leptin Controls Arterial Pressure and Sympathetic Activity Through PI3K Signaling in POMC Neurons. FASEB Journal, 2013, 27, .	0.2	0
182	Vagal nerve stimulation reduces metabolic rate and uncouples the relationship between heart rate and oxygen consumption in conscious mice (LB775). FASEB Journal, 2014, 28, LB775.	0.2	0
183	Neonatal Growth Restriction Heightens Leptinâ€Evoked Arterial Blood Pressure and Renal Sympathetic Nerve Responses in Adult Mice. FASEB Journal, 2015, 29, 655.5.	0.2	Ο
184	Dissociating the Metabolic and Cardiovascular Effects of Leptin Through mTORC1 Signaling. FASEB Journal, 2015, 29, .	0.2	0
185	Smooth Muscle PPARγ Mutation Causes Impaired Renal Blood Flow and Saltâ€Sensitive Hypertension. FASEB Journal, 2018, 32, .	0.2	Ο
186	mTORC1 in leptin receptorâ€containing neurons mediates an obesityâ€induced increase in sympathetic tone and blood pressure. FASEB Journal, 2018, 32, 885.16.	0.2	0
187	Hepatic Bbs1 Gene is a Critical Determinant of Glucose Metabolism and Insulin Sensitivity. FASEB Journal, 2019, 33, .	0.2	Ο
188	Adipose tissueâ€specific disruption of the BBSome cause insulin resistance. FASEB Journal, 2020, 34, 1-1.	0.2	0
189	Polysynaptic Neurotracing of Autonomic Nuclei Involved in Liver and Kidney Function. FASEB Journal, 2020, 34, 1-1.	0.2	Ο
190	Conditional Disruption of the BBSome in POMC Neurons Alter Energy and Glucose Homeostasis. FASEB Journal, 2022, 36, .	0.2	0